组卷网 > 知识点选题 > 最小二乘法
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 134 道试题
1 . 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本(元)与生产的产品数量(千件)有关,经统计得到如下数据:
258911
1210887
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合的关系?并指出是正相关还是负相关;
(2)求关于的回归方程,并预测生产该产品13千件时,每件产品的非原料成本为多少元?
(3)设满足,其中近似为样本平均数近似为样本方差,求.
附:参考公式:相关系数
参考数据:,若,则.
2 . 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.
3456
2.5344.5
(1)请根据表中提供的数据,求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:.
3 . 一位父亲在孩子出生后,每月给小孩测量一次身高,得到前7个月的数据如下表所示.

月龄

1

2

3

4

5

6

7

身高(单位:厘米)

52

56

60

63

65

68

70

(1)求小孩前7个月的平均身高;
(2)求出身高y关于月龄x的回归直线方程(计算结果精确到整数部分);
(3)利用(2)的结论预测一下8个月的时候小孩的身高.
参考公式:
4 . 下表是某学生在4月份开始进入冲刺复习至高考前的5次大型联考数学成绩(分):

联考次数x(1≤x≤5,xN*

1

2

3

4

5

数学分数y(0<y≤150)

117

127

125

134

142

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率. (复习提高率=×100%,分数取整数).
附:回归直线的斜率和截距的最小二乘估计公式分别为:,其中为样本平均值,
线性回归方程为
5 . 为调查某地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,据分析野生动物的数量与植物覆盖面积线性相关并计算得
(1)求该地区植物覆盖面积和野生动物数量的回归直线方程;
(2)根据上述方程,预计该地区一块植物覆盖面积为公顷的地块中这种野生动物的数量.
参考公式:回归直线方程中斜率和截距的最小二乘估计公式分别为:
6 . 我国在芯片领域的短板有光刻机和光刻胶,某风险投资公司准备投资芯片领域,若投资光刻机项目,据预期,每年的收益率为30%的概率为,收益率为%的概率为;若投资光刻胶项目,据预期,每年的收益率为30%的概率为0.4,收益率为%的概率为0.1,收益率为零的概率为0.5.
(1)已知投资以上两个项目,获利的期望是一样的,请你从风险角度考虑为该公司选择一个较稳妥的项目;
(2)若该风险投资公司准备对以上你认为较稳妥的项目进行投资,4年累计投资数据如下表:
年份x2018201920202021
1234
累计投资金额y(单位:亿元)2356
请根据上表提供的数据,用最小二乘法求出y关于的线性回归方程,并预测到哪一年年末,该公司在芯片领域的投资收益预期能达到0.75亿元.
附:收益=投入的资金×获利的期望;线性回归中,
7 . 某企业为加强科研创新,加大研发资金的投入,新研发了一种产品.该产品的生产成本由直接生产成本(如原料、工人工资、机器设备折旧等)和间接生产成本(如物料消耗、管理人员工资、车间房屋折旧等)组成.该产品的间接生产成本y(万元)与该产品的生产数量x(千件)有关,经统计并对数据作初步处理,得到散点图及一些统计量的值.
3.513.241.8117.51.4619.95.84
表中.
(1)根据散点图判断哪一个更适合作为间接生产成本y与该产品的生产数量x的回归方程类型;(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测生产9千件产品时,间接生产成本是多少万元;
(3)为确保产品质量,该企业在生产过程中对生产的每件产品均进行五个环节的质量检测,若检测出不合格产品,则需在未进入下一环节前立即修复(修复后再进入下一环节),已知每个环节是相互独立的,且每个环节产品检测的合格率均为98%,各环节中不合格的一件产品所需的修复费用均为100元,求一件产品需修复的平均费用.
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.
2022-04-10更新 | 562次组卷 | 2卷引用:贵州省普通高等学校招生2022届高三全国统一模拟测试数学(理)试题(四)
8 . 某项科研活动共进行了5次试验,其数据如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(1)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(2)求特征量y关于x的线性回归方程,并预测当特征量x为570时,特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为
9 . 小强5次考试的数学与物理成绩(满分100分)如下表,由散点图可知,小强的数学成绩x与物理成绩y之间线性相关.
数学成绩x6768707273
物理成绩y6463666567
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,小强第6次考试数学成绩是78分,请估计小强的物理分数.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
10 . 某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间内者可以参与一次抽奖,根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下:

(1)求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表,结果保留到整数);
(2)若根据超市的经营规律,购买金额与平均利润有以下四组数据:
购买金额x(单位:元)100200300400
利润:(单位:元)15254060
试根据所给数据,建立关于的线性回归方程,并根据1中计算的结果估计超市对每位顾客所得的利润
参考公式:
2022-03-28更新 | 273次组卷 | 4卷引用:贵州省凯里市第一中学2018届高三下学期开学(第一次模拟)考试数学(文)试题
共计 平均难度:一般