组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 28 道试题
1 . 某学校号召学生参加“每天锻炼1小时”活动,为了解学生参加活动的情况,统计了全校所有学生在假期每周锻炼的时间,现随机抽取了60名同学在某一周参加锻炼的数据,整理如下列联表:

性别

不经常锻炼

经常锻炼

合计

男生

7

女生

16

30

合计

21

注:将一周参加锻炼时间不小于3小时的称为“经常锻炼”,其余的称为“不经常锻炼”.
(1)请完成上面列联表,并依据小概率值的独立性检验,能否认为性别因素与学生锻炼的经常性有关系;
(2)将一周参加锻炼为0小时的称为“极度缺乏锻炼”.在抽取的60名同学中有5人“极度缺乏锻炼”.以样本频率估计概率.若在全校抽取20名同学,设“极度缺乏锻炼”的人数为X,求X的数学期望和方差
(3)将一周参加锻炼6小时以上的同学称为“运动爱好者”.在抽取的60名同学中有10名“运动爱好者”,其中有7名男生,3名女生.为进一步了解他们的生活习惯,在10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y,求Y的分布列和数学期望.
附:

0.1

0.05

0.01

2.706

3.841

6.635

2 . 2024年1月4日,教育部在京召开全国“双减”工作视频调度会,会议要求进一步提高双减政治站位,将“双减”工作作为重中之重,坚定不移推进,成为受老师和家长关注的重要话题.某学校为了解家长对双减工作的满意程度进行问卷调查(评价结果仅有“满意”、“不满意”),从所有参与评价的对象中随机抽取120人进行调查,部分数据如表所示(单位:人):

满意

不满意

合计

男性

10

50

女性

60

合计

120

(1)请将列联表补充完整,试根据小概率值的独立性检验,能否认为“对双减工作满意程度的评价与性别有关”?
(2)若将频率视为概率,从所有给出“满意”的家长中随机抽取3人,用随机变量表示被抽到的男性家长的人数,求的分布列;
(3)在抽出的120人中,从给出“满意”的家长中利用分层抽样的方法抽取10人,从给出“不满意”的对象中抽取人.现从这人中,随机抽出2人,用随机变量表示被抽到的给出“满意”的女性家长的人数.若随机变量的数学期望不小于1,求的最大值.
参考公式:,其中
参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

2024-05-08更新 | 737次组卷 | 5卷引用:专题07 回归方程与独立性检验--高二期末考点大串讲(苏教版2019选择性必修第二册)
3 . 已知某校篮球队共有9名队员,其中5名主力队员,4名替补队员.在某次训练中,该校篮球队教练从中随机地挑选3名队员进行投篮训练,每名队员至多投篮5次,一旦连续命中2次或者投完5次,都停止投篮.
(1)记选出的3名队员中主力队员的人数为随机变量,求的概率分布和数学期望;
(2)已知队员甲被选中参加投篮训练,假定队员甲每次投篮命中率均为,记队员甲投篮次数为随机变量,求的概率分布和数学期望.
2024-05-08更新 | 573次组卷 | 2卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
4 . 为推动党史学习教育工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委决定在教师党员中开展“学党史”知识竞赛.甲老师从装有6个不同问题的纸盒中依次不放回抽取4个问题作答.已知这6个问题中,甲能正确回答其中的4个问题,且甲老师对每个问题回答正确与否都是相互独立、互不影响的.
(1)求甲老师答对2个问题的概率;
(2)若测试过程中答对1个问题得2分,答错得0分,设随机变量表示甲的得分,求.
2024-05-08更新 | 838次组卷 | 5卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
智能选题,一键自动生成优质试卷~
5 . 某省2023年开始将全面实施新高考方案.在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为ABCDE共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省部分学校联合组织了一次高二年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.
(1)其中一所学校某班生物学科获得A等级的共有10名学生,其原始分及转换赋分如表:
原始分97959190898785848483
赋分99979595949291909090
现从这10名学生中随机抽取3人,设这3人中生物的赋分不低于95分的人数为X,求X的分布列和数学期望:
(2)假设此次高二学生生物学科原始分Y近似服从正态分布.现随机抽取了100名高二学生的此次生物学科的原始分,后经调查发现其中有一名学生舞弊,剔除掉这名学生成绩后,记ξ为其他被抽到的原始分不低于80分的学生人数,预测当取得最大值时k的值.
附,若,则
2024-04-30更新 | 999次组卷 | 9卷引用:专题06 离散型随机变量分布列及正态分布--高二期末考点大串讲(苏教版2019选择性必修第二册)
6 . 刷脸时代来了,人们为“刷脸支付”给生活带来的便捷感到高兴,但“刷脸支付”的安全性也引起了人们的担忧.某调查机构为了解人们对“刷脸支付”的接受程度,通过安全感问卷进行调查(问卷得分在分之间),并从参与者中随机抽取人.根据调查结果绘制出如图所示的频率分布直方图.

(1)据此估计这人满意度的平均数同一组中的数据用该组区间的中点值作代表
(2)某大型超市引入“刷脸支付”后,在推广“刷脸支付”期间,推出两种付款方案:方案一:不采用“刷脸支付”,无任何优惠,但可参加超市的抽奖返现金活动.活动方案为:从装有个形状、大小完全相同的小球其中红球个,黑球的抽奖盒中,一次性摸出个球,若摸到个红球,返消费金额的;若摸到个红球,返消费金额的,除此之外不返现金.
方案二:采用“刷脸支付”,此时对购物的顾客随机优惠,但不参加超市的抽奖返现金活动,根据统计结果得知,使用“刷脸支付”时有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.现小张在该超市购买了总价为元的商品.
①求小张选择方案一付款时实际付款额的分布列与数学期望;
②试从期望角度,比较小张选择方案一与方案二付款,哪个方案更划算?(注:结果精确到
2024-04-30更新 | 1878次组卷 | 7卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
7 . 2024年“与辉同行”直播间开播,董宇辉领衔7位主播从“心”出发,其中男性5人,女性3人,现需排班晚8:00黄金档,随机抽取两人,则男生人数的期望为(       
A.B.C.D.
2024-03-31更新 | 1436次组卷 | 8卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
8 . 为深入学习贯彻党的二十大精神,推动全市党员干部群众用好“学习强国”学习平台,激发干事创业热情.某单位组织“学习强国”知识竞赛,竞赛共有道题目,随机抽取道让参赛者回答.已知小明只能答对其中的道,试求:
(1)抽到他能答对题目数的分布列;
(2)求的期望和方差
2024-03-19更新 | 2681次组卷 | 10卷引用:第8章 概率 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
9 . “英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2023年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从中学里挑选优秀学生参加数学、物理、化学学科夏令营活动.
(1)若数学组的7名学员中恰有3人来自中学,从这7名学员中选取3人,表示选取的人中来自中学的人数,求的分布列和数学期望;
(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动,规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利.已知甲乙两位同学组成一组,甲、乙答对每道题的概率分别为.假设甲、乙两人每次答题相互独立,且互不影响.当时,求甲、乙两位同学在每轮答题中取胜的概率的最大值.
2024-02-27更新 | 4451次组卷 | 16卷引用:第8章 概率 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
10 . 某袋中装有大小相同、质地均匀的6个球,其中4个黑球和2个白球.从袋中随机取出2个球,记取出白球的个数为X
(1)写出X的分布列,并求出的值;
(2)若取出一个白球得一分,取出一个黑球得两分,最后得分为Z,求出的值.
2024-02-03更新 | 949次组卷 | 8卷引用:8.2 离散型随机变量及其分布列(1)
共计 平均难度:一般