名校
1 . 为了不断提高教育教学能力,某地区教育局利用假期在某学习平台组织全区教职工进行网络学习.第一学习阶段结束后,为了解学习情况,负责人从平台数据库中随机抽取了300名教职工的学习时间(满时长15小时),将其分成六组,并绘制成如图所示的频率分布直方图(同一组中的数据用该组区间的中点值为代表).
(2)以样本估计总体,该地区教职工学习时间近似服从正态分布,其中近似为样本的平均数,经计算知.若该地区有5000名教职工,试估计该地区教职工中学习时间在内的人数;
(3)现采用分层抽样的方法从样本中学习时间在内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在内的教职工平均人数.(四舍五入取整数)
参考数据:若随机变量服从正态分布,则,,.
(1)求a的值;
(2)以样本估计总体,该地区教职工学习时间近似服从正态分布,其中近似为样本的平均数,经计算知.若该地区有5000名教职工,试估计该地区教职工中学习时间在内的人数;
(3)现采用分层抽样的方法从样本中学习时间在内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在内的教职工平均人数.(四舍五入取整数)
参考数据:若随机变量服从正态分布,则,,.
您最近一年使用:0次
2023-07-21更新
|
579次组卷
|
4卷引用:四川省叙永第一中学校2023-2024学年高三上学期零诊考试数学(理科)试题
名校
解题方法
2 . 为了解人们对环保的认知程度,某市为不同年龄和不同职业的人举办了一次环保知识竞赛,满分100分.随机抽取的8人的得分为84,78,81,84,85,84,85,91.
(1)计算样本平均数和样本方差;
(2)若这次环保知识竞赛的得分X服从正态分布,其中和的估计值分别为样本平均数和样本方差,若按照15.87%,68.26%,13.59%,2.28%的比例将参赛者的竞赛成绩从低分到高分依次划分为参与奖、二等奖、一等奖、特等奖四个等级,试确定各等级的分数线.(结果保留两位小数)(参考数据)
附:若随机变量X服从正态分布,则,,.
(1)计算样本平均数和样本方差;
(2)若这次环保知识竞赛的得分X服从正态分布,其中和的估计值分别为样本平均数和样本方差,若按照15.87%,68.26%,13.59%,2.28%的比例将参赛者的竞赛成绩从低分到高分依次划分为参与奖、二等奖、一等奖、特等奖四个等级,试确定各等级的分数线.(结果保留两位小数)(参考数据)
附:若随机变量X服从正态分布,则,,.
您最近一年使用:0次
2024-05-30更新
|
365次组卷
|
7卷引用:内蒙古名校联盟2023-2024学年高二下学期教学质量检测数学试题
内蒙古名校联盟2023-2024学年高二下学期教学质量检测数学试题河北省保定市部分学校2023-2024学年高二下学期5月期中考试数学试题河北省秦皇岛市卢龙县2023-2024学年高二下学期5月考试数学试题内蒙古开鲁县第一中学、和林格尔县第三中学等2023-2024学年高二下学期5月月考数学试题(已下线)专题04 随机变量及其分布类常考题型归类--高二期末考点大串讲(人教B版2019选择性必修第二册)(已下线)【高二模块二】类型3 以随机变量及其分布为背景的解答题(B卷提升卷)河北省石家庄十五中2023-2024学年高二下学期第三次月考数学试题
3 . 为了迎接4月23日“世界图书日”,宁波市将组织中学生进行一次文化知识有奖竞赛,竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.
(1)求的值;若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若我市所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
①若我市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
②若从所有参赛学生中(参赛学生数大于随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列.
附参考数据:若随机变量服从正态分布,则,,.
(1)求的值;若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若我市所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
①若我市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
②若从所有参赛学生中(参赛学生数大于随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列.
附参考数据:若随机变量服从正态分布,则,,.
您最近一年使用:0次
2024-05-29更新
|
975次组卷
|
4卷引用:山西大学附属中学校2023-2024学年高二下学期期中考试数学试题
山西大学附属中学校2023-2024学年高二下学期期中考试数学试题(已下线)核心考点7 二项分布与超几何分布、正态分布 A基础卷 (高二期末考试必考的10大核心考点)(已下线)高二数学下学期期末押题--高二期末考点大串讲(苏教版2019选择性必修第二册)福建省泉州市泉港二中、泉州十一中、晋江陈埭中学2023-2024学年高二下学期7月期末考试数学试题
名校
解题方法
4 . 某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛类励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获得一等奖,其他学生不得奖,为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.
(1)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(2)若从所有参赛学生中(参赛学生数大于随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量服从正态分布,则,,.
若该市所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(1)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(2)若从所有参赛学生中(参赛学生数大于随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量服从正态分布,则,,.
您最近一年使用:0次
名校
解题方法
5 . 为了迎接4月23日“世界图书日”,我市将组织中学生进行一次文化知识有奖竞赛,竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下
(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若我市所有参赛学生的成绩近似服从正态分布,利用所得正态分布模型解决以下问题:
(ⅰ)若我市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ⅱ)若从所有参赛学生中(参赛学生数大于100000)随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列及均值.
附参考数据:若随机变量服从正态分布,则
,.
成绩(分) | |||||||
频数 | 6 | 12 | 18 | 34 | 16 | 8 | 6 |
(2)若我市所有参赛学生的成绩近似服从正态分布,利用所得正态分布模型解决以下问题:
(ⅰ)若我市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ⅱ)若从所有参赛学生中(参赛学生数大于100000)随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列及均值.
附参考数据:若随机变量服从正态分布,则
,.
您最近一年使用:0次
2023-08-18更新
|
767次组卷
|
4卷引用:河南省周口市项城市第三高级中学2022-2023学年高二下学期第三次考试数学试卷(A)
河南省周口市项城市第三高级中学2022-2023学年高二下学期第三次考试数学试卷(A)江苏省南京市六校联合体2022-2023学年高二下学期5月调研数学试题(已下线)7.5 正态分布(6大题型)精练-2023-2024学年高二数学题型分类归纳讲与练(人教A版2019选择性必修第三册)湖北省武汉市育才高级中学2023-2024学年高二下学期六月月考数学试卷
6 . 某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获得一等奖,其他学生不得奖,为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若该市所有参赛学生的成绩X近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量X服从正态分布,则,,.
(2)若该市所有参赛学生的成绩X近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量X服从正态分布,则,,.
您最近一年使用:0次
2023-02-20更新
|
4131次组卷
|
11卷引用:广东省广州市天河区2021-2022学年高二下学期期末数学试题
广东省广州市天河区2021-2022学年高二下学期期末数学试题四川省内江市第六中学2022-2023学年高三上学期入学考试数学(理科)试题(已下线)专题50 正态分布-2山西省阳泉市2023届高三上学期期末数学试题湖南省长沙市雅礼中学2022-2023学年高三上学期月考(四)数学试题(已下线)第七章 随机变量及其分布 讲核心 02(已下线)7.5 正态分布 (精练)陕西省西安市西北工业大学附属中学2023届高三下学期第八次适应性训练理科数学试题河北省石家庄市正中实验中学2022-2023学年高二下学期4月月考数学试题(已下线)第七章 随机变量及其分布 讲核心 02辽宁省沈阳铁路实验中学2023-2024学年高二下学期4月阶段测试数学试卷
名校
7 . 第十四届全国人民代表大会第一次会议于2023年3月5日上午开幕,3月13日上午闭幕.某校为了解学生对新闻大事的关注度,在该校随机抽取了100名学生进行问卷调查,问卷成绩近似服从正态分布,且.
(1)估计抽取学生中问卷成绩在90分以上的学生人数;
(2)若本次问卷调查的得分不低于80分,则认为该学生对新闻大事关注度极高,在该校随机抽取10名学生,记对新闻大事关注度极高的学生人数为,求的期望.
(1)估计抽取学生中问卷成绩在90分以上的学生人数;
(2)若本次问卷调查的得分不低于80分,则认为该学生对新闻大事关注度极高,在该校随机抽取10名学生,记对新闻大事关注度极高的学生人数为,求的期望.
您最近一年使用:0次
2023-04-20更新
|
448次组卷
|
6卷引用:河北省石家庄市部分学校2022-2023学年高二下学期期中数学试题
河北省石家庄市部分学校2022-2023学年高二下学期期中数学试题河北省沧州市沧县中学2022-2023学年高二下学期期中数学试题(已下线)模块三 专题7 随机变量及其分布列--基础夯实练)(人教A版)(已下线)模块三 专题5 概率--大题分类练--基础夯实练(北师大2019版 高二)(已下线)模块三 专题6 概率--(基础夯实练)(苏教版高二)湖南省衡阳市衡山县德华盛星源高级中学有限公司2022-2023学年高二下学期期中数学试题
8 . 贵妃杏是河南省灵宝市黄河沿岸地区的一种水果,其果实个大似鹅蛋,外表呈橙黄色,阳面有晕.贵妃杏口感甜美,肉质实心鲜嫩多汁,营养丰富,是河南省的知名特产之一.已知该地区某种植园成熟的贵妃杏(按个计算)的质量(单位:克)服从正态分布,且.从该种植园成熟的贵妃杏中选取了10个,它们的质量(单位:克)为,这10个贵妃杏的平均质量恰等于克.
(1)求.
(2)求.
(3)甲和乙都从该种植园成熟的贵妃杏中随机选取1个,若选取的贵妃杏的质量大于100克且不大于104克,则赠送1个贵妃杏;若选取的贵妃杏的质量大于104克,则赠送2个贵妃杏.记甲和乙获赠贵妃杏的总个数为,求的分布列与数学期望.
(1)求.
(2)求.
(3)甲和乙都从该种植园成熟的贵妃杏中随机选取1个,若选取的贵妃杏的质量大于100克且不大于104克,则赠送1个贵妃杏;若选取的贵妃杏的质量大于104克,则赠送2个贵妃杏.记甲和乙获赠贵妃杏的总个数为,求的分布列与数学期望.
您最近一年使用:0次
昨日更新
|
241次组卷
|
5卷引用:河北省邢台市质检联盟2024-2025学年高三上学期第一次月考(10月)数学试题