组卷网 > 知识点选题 > 利用动量定理求解其他问题
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 10 道试题
1 . 如图所示,质量的均匀长木板静置于光滑水平地面上,长木板长,右端恰好位于O点。质量的物块置于长木板右端,物块与长木板间的动摩擦因数。水平地面MN段粗糙程度相同,其余部分光滑。已知,物块与长木板之间最大静摩擦力等于滑动摩擦力,物块可视为质点,重力加速度g取。现有一水平向右的恒力作用在长木板上,当长木板右端运动到M点时撤去F,长木板恰好有一半进入MN段时停下,然后再给长木板一个向右的瞬时冲量,使它获得与其右端运动到M点时相同的速度,长木板又向右运动一段后又停下。若物块从长木板上滑落,不会再与之发生相互作用。求:
(1)F刚开始作用时,物块和长木板的加速度大小;
(2)撤去F时长木板的速度大小
(3)水平面MN段与长木板间的动摩擦因数
(4)长木板两次减速所用的时间之比。

2024-04-28更新 | 559次组卷 | 1卷引用:2024届山东省实验中学高三下学期一模考试物理试题
22-23高三下·山东潍坊·阶段练习
2 . 如图所示,质量的矩形线框abcdab边长bc边长,总电阻,沿光滑水平面向右以速度冲向宽度的有界匀强磁场,磁感应强度,方向竖直向上,则(  )

A.线框刚进入磁场时,ab边两端的电压为0.5V
B.线框能够穿过磁场,穿过磁场后的速度为
C.线框不能穿过磁场,最后线框的cd边停在距有界磁场的左边界0.06m处
D.线框在整个运动过程中产生的焦耳热为0.04J
3 . 如图所示,两平行光滑轨道水平放置,间距为L,左侧是半径为R的四分之一光滑圆轨道,水平轨道与圆轨道末端相切,区域Ⅰ(虚线MN之间)有垂直轨道平面向上的磁场、区域Ⅱ(PQ右侧)有垂直于轨道平面向下的磁场,磁感应强度均为B,区域Ⅱ部分足够长,轨道两端均有导线连接,区域Ⅰ、Ⅱ之间轨道为绝缘材质且足够长,其余部分均为金属导轨,导体棒a质量为4m,电阻为,导体棒b质量未知,电阻为,导体棒c质量为m,电阻为r,其它电阻不计。初始时,导体棒a在圆轨道顶端由静止释放,离开区域I的速度为进入时速度的一半,导体棒bc右侧依次放置,重力加速度为g
(1)求磁场区域Ⅰ的长度;
(2)a离开区域Ⅰ后与b碰撞,然后bc碰撞,碰撞均为弹性碰撞,若c能获得最大速度,则b的质量是多少?
(3)若满足(2)的条件,导体棒最终均停在区域Ⅱ,则ac间距离是多少?
2022-05-26更新 | 1044次组卷 | 1卷引用:2022届辽宁省沈阳市高三下学期教学质量监测(三模)物理试题
4 . 如图所示,边长为、质量为、电阻为的匀质正方形刚性导体线框和直角坐标系x轴水平,y轴竖直)均处于竖直平面内。在第一象限的空间内存在垂直于纸面向里的磁场,磁感应强度在x方向均匀分布,y方向上满足(各量均采用国际单位,k为大于0的未知量)。初始时,线框的A点与坐标原点O重合,边与x轴重合(记为位置1)。现给线框一个沿着x轴正方向的速度,并且给线框一个竖直向上的恒力,当线框A点下降的高度为(记为位置2)时,可以认为线框恰好达到最大速度,且线框中的电流。此后恒力F保持大小不变,方向改为x方向,线框继续运动到位置3(位置3和位置2中A点的横坐标相距),此后轨迹是抛物线。若整个运动过程中,线框始终处于同一竖直平面内,边始终保持水平,不计空气阻力,重力加速度为g,求:
(1)k的数值;
(2)线框从位置1到位置2的时间
(3)线框从位置2运动到位置3的竖直高度差h
智能选题,一键自动生成优质试卷~
5 . 如图甲所示,在倾角为θ=30°的光滑斜面上,有一质量为m=1kg的“U”形(矩形)金属导轨ABCD,其中BC长为L=2m,电阻为R=0.5Ω;ABCD足够长且电阻不计,BC与斜面底边平行。另外有一导体棒EF质量为,电阻也为R=0.5Ω,平行于BC放置在导轨上,且由斜面上的两个立柱挡住,导体棒EF与导轨间的动摩擦因数μ=0.1,在立柱下方存在垂直斜面向下、大小B=1T的匀强磁场,立柱上方内存在沿斜面向上、大小也为B=1T的匀强磁场。以BC边初始位置为原点O、沿斜面向下为正方向建立坐标x轴,然后给导轨沿斜面向下的拉力F,使导轨从静止开始运动,导体棒EF两端电压随时间变化关系如图乙所示,经过2s后撤去拉力,此过程中拉力做功W=22J。导体棒EF始终与导轨垂直。
(1)分析前2s内“U”金属导轨的加速度大小;
(2)求前2s内外力F与时间t的变化关系;
(3)在撤去外力后,求“U”形金属导轨速度与BC边坐标x的函数关系式。
2022-05-12更新 | 1562次组卷 | 4卷引用:2022届浙江省绍兴市柯桥区高三下学期高考及选考科目适应性考试物理试题
6 . 如图所示,MN为竖直放置的平行金属板,两板间所加电压为U0,S1、S2为板上正对的小孔。金属板PQ水平放置在N板右侧,关于小孔S1、S2所在直线对称,PQ两板的长度和两板间的距离均为d;距金属板PQ右边缘d处固定有一荧光屏,荧光屏垂直于金属板PQ;屏上O点与S1、S2共线。加热的阴极K发出的电子经小孔S1进入MN两板间,通过MN间的加速电场加速后,进入PQ间。已知电子的质量为m,电荷量为e,单位时间内从小孔S1进入的电子个数为n,初速度可以忽略。整个装置处于真空中,忽略电子重力及电子间的相互作用,不考虑相对论效应。
(1)若在PQ两板间加一交变电压,离开偏转电场的电子打在荧光屏上被吸收。与交变电流的周期相比,每个电子在板PQ间运动的时间可忽略不计,不考虑电场变化产生的磁场,偏转电场可视为匀强电场。求在一个周期(即T0时间)内电子对荧光屏的平均作用力。
(2)若板PQ间只存在垂直于纸面向外的匀强磁场,电子刚好经过P板的右边缘后,打在荧光屏上。求磁场的磁感应强度大小B和电子打在荧光屏上的位置坐标x
2022-01-17更新 | 2026次组卷 | 4卷引用:2023年山东省普通高等学校招生全国统一考试全真模拟物理试题
7 . 1986年,阿瑟·阿什金发明了第一代光镊,经过30多年的发展,光镊技术也越来越成熟,并被广泛运用于医学及生物学等诸多领域,2018年诺贝尔物理学奖被授予美国的亚瑟·阿斯金、法国的杰哈·莫罗和加拿大的唐娜·斯特里克兰三位物理学家,以表彰他们“在激光物理领域的突破性发明”。为简单起见,我们建立如下模型。如图所示,有两束功率均为P,波长为的平行细激光束,与一焦距为f的透镜主光轴平行射入凸透镜,后进入一球状透明介质,出射透明介质的光束仍与主光轴平行。透镜主光轴在竖直方向,且与球状透明介质的一条直径重合,此时透明介质球恰好处于静止状态,已知球状透明介质的质量为m,当地的重力加速度为g,真空中光速为c,以下说法正确的有(  )
A.若激光束的功率大于激光束的功率,则透明介质球将向左侧偏移
B.若将介质球相对于透镜上移一小段距离,则介质球受到激光的作用力将变小
C.若将介质球相对于透镜下移一小段距离,则介质球受到激光的作用力将变小
D.题干条件下激光功率为
8 . 如图所示,质量为M=5.0kg的长木板B静止在粗糙水平面上,长木板B右端距离平台DC左边距离为34.5m,竖直平面内半径R=0.4m的光滑半圆形轨道与平台DC右端相切于C点,平台与长木板B等高,在半圆轨道最高点固定一弹性挡板P(小物块与弹性挡板P相碰后以原速率反弹)。某时刻一质量为m=1.0kg的小木块A(可视为质点),以35m/s的初速度从左端滑上长木板,同时用一水平向右的恒力F=11N拉动长木板,使其向右做匀加速直线运动,当小木块A运动到长木板B的最右端时,二者恰好相对静止,此时撤去恒力F,随后长木板B与平台DC左端相碰,碰后长木板B速度为0,小木块A以碰前速度滑上平台,已知长木板与地面间动摩擦因数μ1=0.1,长木板与小木块间的动摩擦因数μ2=0.5,平台上铺设一种特殊材料,使得小物块A滑上平台后所受阻力大小与其速度大小成正比(即F=kvk=2Ns/m),方向与速度方向相反,重力加速度g=10m/s2。求:
(1)小木块A在长木板B上滑动过程中两者的加速度大小各为多少;
(2)长木板B的长度L和小木块A与长木板B因摩擦产生的热量Q
(3)若小物块A能冲上半圆轨道,并能从半圆轨道上返回到平台DC上,平台DC的长度S应满足什么条件。(结果可以用根式表示)
9 . (1)动量定理可以表示为FΔtp,其中力F和动量p都是矢量。在运用动量定理处理二维问题时,可以在相互垂直的xy两个方向上分别研究。如图1所示,质量为m的小球斜射到钢板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v,碰撞过程中忽略小球所受重力,碰撞时间Δt为已知。求小球对钢板的作用力F1
(2)光子除了有能量,还有动量。若光子能量为E,动量为p,则光子动量,式中 c为真空中的光速。当光照射到物体表面上时,不论光被物体吸收还是被物体表面反射,光子的动量都会发生改变,因而对物体表面产生一种压力。

图2是1901年俄国物理学家列别捷夫测量光压的实验装置。T型架通过悬丝竖直悬挂,横臂水平,悬丝一端固定在横臂中点。在横臂的两侧有圆片PQ,两圆片与T型架在同一竖直平面内。圆片P是涂黑的,当光线照射到P上时,可以认为光子全部被吸收;圆片Q是光亮的,当光线照射到Q上时,可以认为光子全部被反射。分别用光线照射在PQ上,都可以引起悬丝的旋转。在悬丝上固定一小平面镜M,用一细光束照射时,就可以获知悬丝扭转的角度。已知光速为c,两个圆片PQ的半径都为r。悬丝转过的角度与光对圆片的压力成正比。
a.用光强(单位时间内通过与传播方向垂直的单位面积的光能)为I0的激光束垂直照射整个圆片P,求激光束对圆片P的压力F2的大小;
b.实验中,第一次用光强为I0的激光束单独照射整个圆片P,平衡时,光束与圆片垂直,且悬丝有一扭转角;第二次仍用该光束单独照射整个圆片Q,平衡时,光束与圆片不垂直,悬丝的扭转角与第一次相同。求激光束与圆片Q所在平面的夹角
10 . 如图,中空的水平圆形转盘内径r=0.6m,外径足够大,沿转盘某条直径有两条光滑凹槽,凹槽内有A、B、D、E四个物块,D、E两物块分别被锁定在距离竖直转轴R=1.0m处,A、B分别紧靠D、E放置。两根不可伸长的轻绳,每根绳长L=1.4m,一端系在C物块上,另一端分别绕过转盘内侧的光滑小滑轮,穿过D、E两物块中间的光滑圆孔,系在A、B两个物块上,A、B、D、E四个物块的质量均为m=1.0kg,C物块的质量=2.0kg,所有物块均可视为质点,(取重力加速度g=10m/s²),计算结果可用最简的分式与根号表示)
(1)启动转盘,转速缓慢增大,求A、D以及B、E之间恰好无压力时的细绳的拉力及转盘的角速度;
(2)停下转盘后,将C物块置于圆心O处,并将A、B向外测移动使轻绳水平拉直,然后无初速度释放A、B、C物块构成的系统,求A、D以及B、E相碰前瞬间C物块的速度;
(3)碰前瞬间解除对D、E物块的锁定,若A、D以及B、E一经碰撞就会粘在一起,且碰撞时间极短,求碰后C物块的速度。
共计 平均难度:一般