组卷网 > 知识点选题 > 爱因斯坦光电效应方程
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 6 道试题
1 . 离子推进技术在太空探索中有广泛的应用,其简化装置为如图1所示,它由长L=1m、内外半径分别为R1=0.1m和R2=0.3m的同轴圆柱面和半径为R2的两圆形电极组成,并将其分为长度相同的电离区I和加速区II。电离区I充有稀薄的铯气体,仅存在方向沿轴向的匀强磁场,内圆柱表面材料的逸出功W=5.0eV,在波长λ=124nm的光照射下可以持续向外发射电子,电子碰撞铯原子,使之电离成为一价正离子。I区产生的正离子(初速度可视为零)进入电势差U=3.64kV的加速区II,被加速后从右侧高速喷出产生推力。在出口处,灯丝C发射的电子注入正离子束中中和离子使之成为原子。已知铯离子质量,电子电荷量,电子质量,普朗克常量与光速乘积。不计离子间、电子间相互作用。
(1)求内圆柱表面发射电子的最大初速度vm
(2)若I区所有光电子均不会碰到外圆柱面,求磁感应强度的最大值Bm
(3)若单位时间内有N=1018个铯离子进入区域II,试求推进器的推力F
(4)为提高电离效果,一般不分I区和II区,在整个圆柱面区域内加载方向沿轴向的匀强磁场和同样的加速电压U,如图2所示。光电子在磁场中旋转的同时被加速,电离出更多的离子。以圆柱面中心轴线为x轴、左侧电极圆心O为原点,建立坐标Ox,若刚被电离的离子初速度可近似为零,单位时间内离子数密度,其中(垂直x轴截面分布情况相同),试求推进器的推力
   
2023-09-07更新 | 1083次组卷 | 1卷引用:浙江省七彩阳光新高考研究联盟2023-2024学年高三上学期开学考试物理试题
2 . 研究光电效应的装置示意图如图所示,该装置可用于分析光子的信息。在xoy平面(纸面)内,垂直面的金属薄板,MNy轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心,圆心角为90°的半径不同的两条圆弧所围的区域I,整个区域I内存在大小可调,方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域I右侧还有一个边界与y轴平行且左边界与O点相距为l、下界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板板间电压U加速(板间电场视为匀强电场),从小孔O射出,并沿各个可能的方向射入板N的右侧空间,调节区域I的电场强度和区域Ⅱ的磁感应强度。使具有某速度并沿某方向运动的电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m,电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为v的光照射M板时有光电子逸出。求:
(1)光电子从M板逸出的最大速度vm的大小;
(2)光电子从O点射出时的速度v0的大小范围;
(3)a.若某光电子从小孔O射出,且在xoy平面内运动,与x轴夹角为α,通过区域I、Ⅱ后被探测器接收到,若此时区域Ⅱ的磁感强度为B2,求该光电子的速度v大小及此时区域I电场强度E的大小;
b.为了使从O 点以各种大小和方向的速度指向区域I的电子都能被探测到,需要调节区域I的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。
3 . (1)用波长为的光照射金属表面所产生的光电子垂直进入磁感强度为B的匀强磁场中做匀速圆周运动时,其最大半径为R,电子质量为m,电量为e,普朗克恒量为,求:金属的逸出功
(2)一个光源以P=1.5W的功率向四周均匀地发射能量。在离光源距离R=3.5m处放置一钾箔,钾的逸出,假设入射光的能量是连续地和平稳地传给钾箔,光子动量,光的平均波长为h为普朗克常量。假设钾箔完全吸收所有照射到它上面的能量。求:
a.钾箔在垂直入射光方向上单位面积上受到光的平均作用力(用题目中的物理符号表示)。
b.按照经典电磁理论,钾箔只需吸收足够的能量就可以逐出电子,若一个要被逐出的电子收集能量的圆形截面的半径约为一个典型原子的半径m,求电子将被逐出的时间。根据计算结果,你认为经典电磁理论在解释光电效应现象时是否合理,并说明理由。
4 . 利用电磁场研究带电的微观粒子是物理学家常用的方法。真空中一实验装置如图甲所示(磁场未画出),其截面图如图乙所示,区域Ⅰ为足够大的水平平行金属板区域,极板间距为,极板间电压恒定,同时板间有垂直纸面向外的匀强磁场,磁感应强度大小为,区域Ⅱ内存在垂直纸面向里的匀强磁场,磁感应强度大小未知,)。极板和屏在磁场方向上均足够长。当频率为的入射光照射到竖直放置的金属板表面时,金属板表面逸出大量速率不同、沿各个方向运动的光电子,光电子先进入起速度选择作用的区域Ⅰ,出区域Ⅰ的光电子可认为均水平射出,之后进入区域Ⅱ全部打在水平光屏上,光屏亮光区域在截面图上的长度。已知逸出的光电子最大速率为,元电荷为,光电子质量为,普朗克常量为,忽略相对论效应,不计光电子重力和光电子之间相互作用。求:
(1)该金属的逸出功和出区域Ⅰ的光电子的最小速度
(2)区域Ⅱ中磁场的磁感应强度
(3)区域Ⅱ中,在如图乙截面内磁场的最小面积
(4)区域Ⅱ中,光电子运动位移的最大值

智能选题,一键自动生成优质试卷~
5 . 光电倍增管是用来将光信号转化为电信号并加以放大的装置,其主要结构为多个相同且平行的倍增极。为简单起见,现只研究其第1倍增极和第2倍增极,其结构如图所示。两个倍增极平行且长度均为2a,几何位置如图所示(图中长度数据已知)。 当频率为的入射光照射到第1倍增极上表面时,从极板上逸出的光电子最大速率为vm。若加电场或磁场可使从第1倍增极逸出的部分光电子打到第2倍增极上表面,从而激发出更多的电子,实现信号放大。已知元电荷为e,电子质量为m,普朗克常量为h,只考虑电子在纸面内的运动,忽略相对论效应,不计重力。
(1)试求制作第1倍增极的金属材料的逸出功W
(2)为使更多光电子达到第2倍增极,可在接线柱AB间接入一个电动势为E的电源,则到达第2倍增极的电子的最大动能是多少;
(3)若仅在纸面内加上垂直纸面的匀强磁场时,发现速度为垂直第1倍增极出射的电子恰能全部到达第2倍增极上表面。忽略电场力的作用,试求:
(I)磁感强度B的大小和方向;
(II)关闭光源后多长时间仍有光电子到达第2倍增极上表面。
可能用到的三角函数值:sin11.5°=0.20,sin15°=0.26,sin37°=0.60。
6 . 在玻尔的原子结构理论中,氢原子由高能态向低能态跃迁时能发出一系列不同频率的光,波长可以用巴耳末—里德伯公式来计算,式中λ为波长,R为里德伯常量,nk分别表示氢原子跃迁前和跃迁后所处状态的量子数,对于每一个k,有其中,赖曼系谱线是电子由的轨道跃迁到的轨道时向外辐射光子形成的,巴耳末系谱线是电子由的轨道跃迁到的轨道时向外辐射光子形成的。
(1)如图所示的装置中,K为一金属板,A为金属电极,都密封在真空的玻璃管中,S为石英片封盖的窗口,单色光可通过石英片射到金属板K上,实验中:当滑动变阻器的滑片位于最左端,用某种频率的单色光照射K时,电流计G指针发生偏转;向右滑动滑片,当AK的电势低到某一值Uc(遏止电压)时,电流计G指针恰好指向零。现用氢原子发出的光照射某种金属进行光电效应实验,若用赖曼系中波长最长的光照射时,遏止电压的大小为U1;若用巴耳末系中n=4的光照射金属时,遏止电压的大小为U2,金属表面层内存在一种力,阻碍电子的逃逸.电子要从金属中挣脱出来,必须克服这种阻碍做功,使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。
已知电子电荷量的大小为e,真空中的光速为c,里德伯常量为R,试求:
a.赖曼系中波长最长的光对应的频率
b.普朗克常量h和该金属的逸出功W0
(2)光子除了有能量,还有动量,动量的表达式为p=h为普朗克常量)
a.请你推导光子动量的表达式
b.处于激发态的某氢原子以速度运动,当它向的基态跃迁时,沿与相反的方向辐射一个光子。辐射光子前后,可认为氢原子的质量为M不变。求辐射光子后氢原子的速度v(用hRM表示)。
共计 平均难度:一般