约数,又称因数.它的定义如下:若整数除以整数除得的商正好是整数而没有余数,我们就称为的倍数,称为的约数.设正整数共有个正约数,记为,,…,,().
(1)当时,若正整数的个正约数构成等比数列,请写出一个的值;
(2)当时,若,,…,构成等比数列,求证:;
(3)记,求证:.
(1)当时,若正整数的个正约数构成等比数列,请写出一个的值;
(2)当时,若,,…,构成等比数列,求证:;
(3)记,求证:.
2024·广东惠州·一模 查看更多[4]
广东省惠州市2024届高三下学期模拟考试(一模)数学试题(已下线)广东省阳江市2024届高三下学期5月模拟数学试题广东省江门市新会第一中学2024届高三下学期高考热身考试数学试题(已下线)专题7 线性代数、抽象代数与数论背景的新定义压轴大题(一)【讲】
更新时间:2024/05/14 16:34:42
|
相似题推荐
解答题-证明题
|
困难
(0.15)
【推荐1】对于数列,若存在常数,,使得对任意的正整数,恒有成立,则称数列是从第项起的周期为的周期数列.当时,称数列为纯周期数列;当时,称数列为混周期数列.记为不超过的最大整数,设各项均为正整数的数列满足:.
(1)若对任意正整数都有,请写出三个满足条件的的值;
(2)若数列是纯周期数列,请写出满足条件的的表达式,并说明理由;
(3)证明:不论为何值,总存在使得.
(1)若对任意正整数都有,请写出三个满足条件的的值;
(2)若数列是纯周期数列,请写出满足条件的的表达式,并说明理由;
(3)证明:不论为何值,总存在使得.
您最近一年使用:0次
解答题-问答题
|
困难
(0.15)
解题方法
【推荐2】用表示一个小于或等于的最大整数.如:,,. 已知实数列、、对于所有非负整数满足,其中是任意一个非零实数.
(Ⅰ)若,写出、、;
(Ⅱ)若,求数列的最小值;
(Ⅲ)证明:存在非负整数,使得当时,.
(Ⅰ)若,写出、、;
(Ⅱ)若,求数列的最小值;
(Ⅲ)证明:存在非负整数,使得当时,.
您最近一年使用:0次
解答题-应用题
|
困难
(0.15)
名校
【推荐3】生命的诞生与流逝是一个永恒的话题,就某种细胞而言,由该种细胞的一个个体进行分裂,分裂后成为新细胞而原细胞不复存在,多次分裂后,由该个细胞繁殖而来的全部细胞均死亡,我们称该细胞“灭绝”.现已知某种细胞有的概率分裂为个细胞(即死亡),...,有的概率分裂为个细胞.记事件:细胞最终灭绝,:细胞第一次分裂为个细胞.记该细胞第一次分裂后有个个体(分裂后的细胞互不影响),在概率论中,我们用的数学期望作为衡量生物灭绝可能性的依据,如果,则在理论上细胞就不会灭绝;相反,如果,则理论上我们认为细胞在足够多代的繁殖后会灭绝,而这两种情况在生物界中都是普遍存在的.
(1)直接写出的数学期望.
(2)用只含和的概率式表示并证明该细胞灭绝的概率为关于方程:的最小正实根.
(3)若某种细胞发生基因突变,当时.
(ⅰ)若当其分裂为两个细胞后,有一个细胞具有与原细胞相同的活力,而另一细胞则在此后丧失分裂为两个的能力(即只有可能分裂成个或个),求证:该细胞的灭绝是必然事件.
(ⅱ)受某种辐射污染,若当其分裂为两个细胞后分裂生成的两个细胞此后均丧失分裂为个的能力,并等可能分裂为个或个细胞.我们称为“泛滥型细胞”,已知:,求出一个该种泛滥型细胞经过次分裂,得到个细胞的概率.
(1)直接写出的数学期望.
(2)用只含和的概率式表示并证明该细胞灭绝的概率为关于方程:的最小正实根.
(3)若某种细胞发生基因突变,当时.
(ⅰ)若当其分裂为两个细胞后,有一个细胞具有与原细胞相同的活力,而另一细胞则在此后丧失分裂为两个的能力(即只有可能分裂成个或个),求证:该细胞的灭绝是必然事件.
(ⅱ)受某种辐射污染,若当其分裂为两个细胞后分裂生成的两个细胞此后均丧失分裂为个的能力,并等可能分裂为个或个细胞.我们称为“泛滥型细胞”,已知:,求出一个该种泛滥型细胞经过次分裂,得到个细胞的概率.
您最近一年使用:0次
【推荐1】已知,,函数.
(1)若,求;
(2)设.记M为,,…,的所有零点组成的集合,X,Y为M的子集,它们各有n个元素,且.设,,,2,…,n,且,.证明:
(i);
(ii).
(1)若,求;
(2)设.记M为,,…,的所有零点组成的集合,X,Y为M的子集,它们各有n个元素,且.设,,,2,…,n,且,.证明:
(i);
(ii).
您最近一年使用:0次
解答题-问答题
|
困难
(0.15)
名校
【推荐2】已知数列{an}的前n项和.
(1)求数列{an}的通项公式an;
(2)设数列{bn}的前n项和为Tn,满足b1=1,.
①求数列{bn}的通项公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差数列,求m+n的最小值.
(1)求数列{an}的通项公式an;
(2)设数列{bn}的前n项和为Tn,满足b1=1,.
①求数列{bn}的通项公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差数列,求m+n的最小值.
您最近一年使用:0次
【推荐1】已知数列满足.
(1)当时,求证:数列不可能是常数列;
(2)若,求数列的前项的和;
(3)当时,令,判断对任意,是否为正整数,请说明理由.
(1)当时,求证:数列不可能是常数列;
(2)若,求数列的前项的和;
(3)当时,令,判断对任意,是否为正整数,请说明理由.
您最近一年使用:0次
【推荐2】已知各项均不为0的数列满足(是正整数),,定义函数,是自然对数的底数.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)记函数,其中.
(i)证明:对任意,;
(ii)数列满足,设为数列的前项和.数列的极限的严格定义为:若存在一个常数,使得对任意给定的正实数(不论它多么小),总存在正整数m满足:当时,恒有成立,则称为数列的极限.试根据以上定义求出数列的极限.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)记函数,其中.
(i)证明:对任意,;
(ii)数列满足,设为数列的前项和.数列的极限的严格定义为:若存在一个常数,使得对任意给定的正实数(不论它多么小),总存在正整数m满足:当时,恒有成立,则称为数列的极限.试根据以上定义求出数列的极限.
您最近一年使用:0次
解答题-问答题
|
困难
(0.15)
名校
解题方法
【推荐1】差分密码分析(Differential Cryptanalysis)是一种密码分析方法,旨在通过观察密码算法在不同输入差分下产生的输出差分,来推断出密码算法的密钥信息.对于数列,规定为数列的一阶差分数列,其中;规定为的二阶差分数列,其中.如果的一阶差分数列满足,则称是“绝对差异数列”;如果的二阶差分数列满足,则称是“累差不变数列”.
(1)设数列,判断数列是否为“绝对差异数列”或“累差不变数列”,请说明理由;
(2)设数列的通项公式,分别判断是否为等差数列,请说明理由;
(3)设各项均为正数的数列为“累差不变数列”,其前项和为,且对,都有,对满足的任意正整数都有,且不等式恒成立,求实数的最大值.
(1)设数列,判断数列是否为“绝对差异数列”或“累差不变数列”,请说明理由;
(2)设数列的通项公式,分别判断是否为等差数列,请说明理由;
(3)设各项均为正数的数列为“累差不变数列”,其前项和为,且对,都有,对满足的任意正整数都有,且不等式恒成立,求实数的最大值.
您最近一年使用:0次
【推荐2】已知数列是正项等比数列,是等差数列,且,,,
(1)求数列和的通项公式;
(2)表示不超过x的最大整数,表示数列的前项和,集合共有4个元素,求范围;
(3),数列的前项和为,求证:.
(1)求数列和的通项公式;
(2)表示不超过x的最大整数,表示数列的前项和,集合共有4个元素,求范围;
(3),数列的前项和为,求证:.
您最近一年使用:0次