组卷网 > 知识点选题 > 数列
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 将2024表示成5个正整数之和,得到方程①,称五元有序数组为方程①的解,对于上述的五元有序数组,当时,若,则称密集的一组解.
(1)方程①是否存在一组解,使得等于同一常数?若存在,请求出该常数;若不存在,请说明理由;
(2)方程①的解中共有多少组是密集的?
(3)记,问是否存在最小值?若存在,请求出的最小值;若不存在,请说明理由.
2 . 已知数列的前项和为,且,数列满足,记,则下列说法正确的是(       
A.
B.
C.恒成立
D.若,关于的不等式恰有两个解,则的取值范围为
3 . 同余定理是数论中的重要内容.同余的定义为:设a.若则称ab关于模m同余,记作(modm)(“|”为整除符号).
(1)解同余方程(mod3);
(2)设(1)中方程的所有正根构成数列,其中
①若),数列的前n项和为,求
②若),求数列的前n项和
共计 平均难度:一般