组卷网 > 知识点选题 > 余弦定理解三角形
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 5 道试题
1 . “费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当的三个内角均小于时,使得的点即为费马点;当有一个内角大于或等于时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知的内角所对的边分别为,且
(1)求
(2)若,设点的费马点,求
(3)设点的费马点,,求实数的最小值.
2024-03-03更新 | 4380次组卷 | 37卷引用:云南省昆明市五华区云南师范大学附属中学2023-2024学年高一下学期3月月考数学试题

2 . “不以规矩,不能成方圆”,出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的角尺,是用来测量、画圆和方形图案的工具。有一块圆形木板,以“矩”量之,较长边为10cm,较短边为5cm,如图所示,将这块圆形木板截出一块三角形木块,三角形顶点都在圆周上,角的对边分别为,满足


(1)求
(2)若的面积为,且,求的周长
2023-03-14更新 | 1582次组卷 | 8卷引用:云南省昆明市2023届“三诊一模”高三复习教学质量检测数学
3 . 仰望星空,时有流星划过天际,令我们感叹生命的短暂,又深深震撼我们凡俗的心灵.流星是什么?从古至今,人们作过无数种猜测.古希腊亚里士多德说,那是地球上的蒸发物,近代有人进一步认为,那是地球上磷火升空后的燃烧现象.10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度.如图,假设地球是一个标准的球体,为地球的球心,为地平线,有两个观测者在地球上的两地同时观测到一颗流星,观测的仰角分别为,其中,,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的两点测得,地球半径为公里,两个观测者的距离 .(参考数据:

(1)求流星发射点近似高度
(2)在古希腊,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体,已知对流层高度大约在18公里左右,若地球半径公里,请你据此判断该流星是地球蒸发物还是“天外来客”?并说明理由.
2021-07-14更新 | 1119次组卷 | 5卷引用:云南师范大学附属中学2020-2021学年高一下学期期中考试数学试题
4 . 我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”.即若的大斜、中斜、小斜分别为abc,则.已知点DAB上一点,,则的面积为________
2020-03-21更新 | 1123次组卷 | 13卷引用:云南省昆明市外国语学校2020-2021学年高一4月月考数学试题
智能选题,一键自动生成优质试卷~
5 . 赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是
A.B.C.D.
共计 平均难度:一般