组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 6 道试题
1 . 已知椭圆和双曲线分别为的离心率.
(1)若,求的渐近线方程;
(2)若,过椭圆的左焦点作斜率为的直线与交于不同两点,过原点作的垂线,垂足为.若点恰好是的中点,求线段的长度.
2022-10-29更新 | 600次组卷 | 3卷引用:上海外国语大学附属中学2023届高三上学期9月月考数学试题
2 . 已知双曲线.
(1)若离心率为,求b的值,的顶点坐标、渐近线方程;
(2)若,是否存在被点平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.
2022-04-26更新 | 471次组卷 | 3卷引用:上海市华东师范大学附属东昌中学2021-2022学年高二下学期期中数学试题
3 . 已知双曲线,直线l交于PQ两点.
(1)若点是双曲线的一个焦点,求的渐近线方程;
(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率.
2022-02-15更新 | 266次组卷 | 1卷引用:上海市闵行区七宝中学附属鑫都实验中学2021-2022学年高二上学期期末数学试题
4 . 已知函数的图像为曲线,点.
(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);
(2)设点为曲线上任意一点,求证:为常数;
(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).
智能选题,一键自动生成优质试卷~
5 . 已知双曲线的焦距为,渐近线方程为
(1)求双曲线的方程;
(2)若对任意的,直线与双曲线总有公共点,求实数的取值范围;
(3)若过点的直线与双曲线交于两点,问在轴上是否存在定点,使得为常数?若存在,求出点的坐标及此常数的值,若不存在,请说明理由.
2021-12-24更新 | 1063次组卷 | 4卷引用:上海市松江区2022届高三一模数学试题
6 . 已知椭圆的离心率与双曲线的离心率互为倒数,且椭圆C的焦距、双曲线E的实轴长、双曲线E的焦距依次构成等比数列.
(1)求椭圆C的标准方程;
(2)若双曲线E的虚轴的上端点为,问是否存在过点的直线交椭圆C两点,使得以为直径的圆过原点?若存在,求出此时直线的方程;若不存在,请说明理由.
共计 平均难度:一般