组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 33 道试题
1 . 已知双曲线一个顶点为,直线过点且交双曲线右支于两点,记的面积分别为.当轴垂直时,
(1)求双曲线的标准方程;
(2)若轴于点.
①求证:为定值;
②若,当时,求实数的取值范围.
2024-08-30更新 | 493次组卷 | 1卷引用:2024届江苏省南京田家炳高级中学高考考前模拟数学试卷
2 . 已知椭圆的左右焦点分别为.等轴双曲线的顶点是的焦点,焦点是的顶点.点上,且位于第一象限,直线的交点分别为,其中轴上方.
(1)求的方程;
(2)求证:为定值;
(3)设点满足直线的斜率为1,记的面积分别为.从下面两个条件中选一个,求的取值范围.
;②.
3 . 在平面直角坐标系xOy中,已知双曲线C)的左、右焦点分别为是双曲线C上一点,且.
(1)求双曲线C的方程;
(2)过点P作直线l与双曲线C的两条渐近线分别交于RS两点.若点P恰为线段RS的中点,求直线l的方程;
(3)设斜率为-2的直线l与双曲线C交于AB两点,点B关于坐标原点的对称点为D.若直线PAPD的斜率均存在且分别为,求证:为定值.
2024-05-22更新 | 411次组卷 | 4卷引用:第3章 圆锥曲线与方程综合测试-【暑假自学课】(苏教版2019)
4 . 已知双曲线的左顶点为,焦点到渐近线距离为

(1)求双曲线E的标准方程;
(2)设双曲线E的右顶点为BP为直线上的动点,连接PAPB交双曲线于MN两点(异于AB),记直线MNx轴的交点为Q
①求证:Q为定点;
②直线MN交直线于点D,记.求证:为定值.
智能选题,一键自动生成优质试卷~
5 . 已知双曲线的离心率为,点在双曲线上.
(1)求双曲线的方程;
(2)若为双曲线的左焦点,过点作直线的左支于两点.点,直线交直线于点.设直线的斜率分别,求证:为定值.
2023-09-16更新 | 1491次组卷 | 8卷引用:专题12 双曲线的几何性质8种常见考法归类(3)
6 . 已知双曲线的一条渐近线方程为,虚轴长为2.
(1)求双曲线的方程;
(2)设直线与双曲线交于两点,点关于轴的对称点为点,求证:直线恒过定点.
2023-09-03更新 | 517次组卷 | 3卷引用:江苏省南京市第九中学2023-2024学年高三上学期8月学情检测数学试题
8 . 如图,已知椭圆的离心率为,以该椭圆上的任意一点和椭圆的左、右焦点为顶点的三角形的周长为6,双曲线的顶点是椭圆的焦点,离心率为.设为双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(1)求椭圆和双曲线的标准方程;
(2)设直线的斜率分别为,求证:为定值;
(3)是否存在常数,使得恒成立?若存在,求出的值;若不存在,请说明理由.
2023-03-01更新 | 472次组卷 | 1卷引用:3.2.2 双曲线的几何性质(难点)-2022-2023学年高二数学《基础·重点·难点 》全面题型高分突破(苏教版2019选择性必修第一册)
9 . 三等分角是古希腊几何尺规作图的三大问题之一,如今数学上已经证明三等分任意角是尺规作图不可能问题,如果不局限于尺规,三等分任意角是可能的.下面是数学家帕普斯给出的一种三等分角的方法:已知角的顶点为,在的两边上截取,连接,在线段上取一点,使得,记的中点为,以为中心,为顶点作离心率为2的双曲线,以为圆心,为半径作圆,与双曲线左支交于点(射线内部),则.在上述作法中,以为原点,直线轴建立如图所示的平面直角坐标系,若,点轴的上方.

(1)求双曲线的方程;
(2)若过点且与轴垂直的直线交轴于点,点到直线的距离为.
证明:①为定值;
.
2024-05-08更新 | 919次组卷 | 5卷引用:江苏省苏锡常镇四市2024届高三下学期教学情况调研考试数学试题
10 . 已知双曲线的两条渐近线分别为上一点的距离之积为
(1)求双曲线的方程;
(2)设双曲线的左、右两个顶点分别为为直线上的动点,且不在轴上,直线的另一个交点为,直线的另一个交点为,直线轴的交点为,直线的交点为,证明
2024-03-07更新 | 418次组卷 | 2卷引用:江苏省镇江市2023-2024学年高三下学期期初考试数学试卷
共计 平均难度:一般