解题方法
1 . 已知双曲线一个顶点为,直线过点且交双曲线右支于两点,记的面积分别为.当与轴垂直时,
(1)求双曲线的标准方程;
(2)若交轴于点,,.
①求证:为定值;
②若,当时,求实数的取值范围.
(1)求双曲线的标准方程;
(2)若交轴于点,,.
①求证:为定值;
②若,当时,求实数的取值范围.
您最近一年使用:0次
2 . 已知椭圆的左、右焦点分别为.等轴双曲线的顶点是的焦点,焦点是的顶点.点在上,且位于第一象限,直线与的交点分别为和,其中在轴上方.
(1)求和的方程;
(2)求证:为定值;
(3)设点满足直线的斜率为1,记的面积分别为.从下面两个条件中选一个,求的取值范围.
①;②.
(1)求和的方程;
(2)求证:为定值;
(3)设点满足直线的斜率为1,记的面积分别为.从下面两个条件中选一个,求的取值范围.
①;②.
您最近一年使用:0次
2024-05-30更新
|
436次组卷
|
4卷引用:江苏省徐州市2024届高三高考考前打靶卷数学试题
江苏省徐州市2024届高三高考考前打靶卷数学试题江苏省镇江市扬中市第二高级中学2024届高三下学期高考临门卷数学试题江西省景德镇市昌江区景德镇一中2023-2024学年高二下学期6月期中考试数学试题(已下线)全真综合模拟卷(三)(高三大一轮好卷)(基础卷)
名校
解题方法
3 . 在平面直角坐标系xOy中,已知双曲线C:(,)的左、右焦点分别为、,是双曲线C上一点,且.
(1)求双曲线C的方程;
(2)过点P作直线l与双曲线C的两条渐近线分别交于R、S两点.若点P恰为线段RS的中点,求直线l的方程;
(3)设斜率为-2的直线l与双曲线C交于A、B两点,点B关于坐标原点的对称点为D.若直线PA、PD的斜率均存在且分别为、,求证:为定值.
(1)求双曲线C的方程;
(2)过点P作直线l与双曲线C的两条渐近线分别交于R、S两点.若点P恰为线段RS的中点,求直线l的方程;
(3)设斜率为-2的直线l与双曲线C交于A、B两点,点B关于坐标原点的对称点为D.若直线PA、PD的斜率均存在且分别为、,求证:为定值.
您最近一年使用:0次
4 . 已知双曲线的左顶点为,焦点到渐近线距离为.
(1)求双曲线E的标准方程;
(2)设双曲线E的右顶点为B,P为直线上的动点,连接PA,PB交双曲线于M,N两点(异于A,B),记直线MN与x轴的交点为Q;
①求证:Q为定点;
②直线MN交直线于点D,记.求证:为定值.
(1)求双曲线E的标准方程;
(2)设双曲线E的右顶点为B,P为直线上的动点,连接PA,PB交双曲线于M,N两点(异于A,B),记直线MN与x轴的交点为Q;
①求证:Q为定点;
②直线MN交直线于点D,记.求证:为定值.
您最近一年使用:0次
2023-12-20更新
|
250次组卷
|
2卷引用:江苏省苏州市苏大附中2023-2024学年高二上学期12月月考数学试题
名校
解题方法
5 . 已知双曲线的离心率为,点在双曲线上.
(1)求双曲线的方程;
(2)若为双曲线的左焦点,过点作直线交的左支于两点.点,直线交直线于点.设直线的斜率分别,求证:为定值.
(1)求双曲线的方程;
(2)若为双曲线的左焦点,过点作直线交的左支于两点.点,直线交直线于点.设直线的斜率分别,求证:为定值.
您最近一年使用:0次
2023-09-16更新
|
1491次组卷
|
8卷引用:专题12 双曲线的几何性质8种常见考法归类(3)
(已下线)专题12 双曲线的几何性质8种常见考法归类(3)湖南省长沙市周南中学2023-2024学年高三上学期第二次阶段性测试数学试题福建省厦门市厦门大学附属科技中学2024届高三上学期10月月考数学试题(已下线)考点16 解析几何中的定值问题 2024届高考数学考点总动员【练】广西玉林市北流市实验中学等四校2023-2024学年高二上学期期中联考质量评价检测数学试题(已下线)专题07 双曲线的压轴题(5类题型+过关检测)-【常考压轴题】2023-2024学年高二数学上学期压轴题攻略(人教A版2019选择性必修第一册)(已下线)第三章 圆锥曲线的方程(压轴题专练)-2023-2024学年高二数学单元速记·巧练(人教A版2019选择性必修第一册)(已下线)专题25 双曲线的简单几何性质9种常见考法归类(2)
名校
解题方法
6 . 已知双曲线的一条渐近线方程为,虚轴长为2.
(1)求双曲线的方程;
(2)设直线与双曲线交于,两点,点关于轴的对称点为点,求证:直线恒过定点.
(1)求双曲线的方程;
(2)设直线与双曲线交于,两点,点关于轴的对称点为点,求证:直线恒过定点.
您最近一年使用:0次
2023-09-03更新
|
517次组卷
|
3卷引用:江苏省南京市第九中学2023-2024学年高三上学期8月学情检测数学试题
名校
解题方法
7 . 已知双曲线:的离心率为,直线:与双曲线C仅有一个公共点.
(1)求双曲线的方程
(2)设双曲线的左顶点为,直线平行于,且交双曲线C于M,N两点,求证:的垂心在双曲线C上.
(1)求双曲线的方程
(2)设双曲线的左顶点为,直线平行于,且交双曲线C于M,N两点,求证:的垂心在双曲线C上.
您最近一年使用:0次
2023-03-24更新
|
2813次组卷
|
8卷引用:江苏省南京市、盐城市2023届高三下学期一模数学试题
2022高二·江苏·专题练习
解题方法
8 . 如图,已知椭圆的离心率为,以该椭圆上的任意一点和椭圆的左、右焦点,为顶点的三角形的周长为6,双曲线的顶点是椭圆的焦点,离心率为.设为双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和,.
(1)求椭圆和双曲线的标准方程;
(2)设直线、的斜率分别为、,求证:为定值;
(3)是否存在常数,使得恒成立?若存在,求出的值;若不存在,请说明理由.
(1)求椭圆和双曲线的标准方程;
(2)设直线、的斜率分别为、,求证:为定值;
(3)是否存在常数,使得恒成立?若存在,求出的值;若不存在,请说明理由.
您最近一年使用:0次
名校
解题方法
9 . 三等分角是古希腊几何尺规作图的三大问题之一,如今数学上已经证明三等分任意角是尺规作图不可能问题,如果不局限于尺规,三等分任意角是可能的.下面是数学家帕普斯给出的一种三等分角的方法:已知角的顶点为,在的两边上截取,连接,在线段上取一点,使得,记的中点为,以为中心,为顶点作离心率为2的双曲线,以为圆心,为半径作圆,与双曲线左支交于点(射线在内部),则.在上述作法中,以为原点,直线为轴建立如图所示的平面直角坐标系,若,点在轴的上方.(1)求双曲线的方程;
(2)若过点且与轴垂直的直线交轴于点,点到直线的距离为.
证明:①为定值;
②.
(2)若过点且与轴垂直的直线交轴于点,点到直线的距离为.
证明:①为定值;
②.
您最近一年使用:0次
解题方法
10 . 已知双曲线的两条渐近线分别为上一点到的距离之积为.
(1)求双曲线的方程;
(2)设双曲线的左、右两个顶点分别为为直线上的动点,且不在轴上,直线与的另一个交点为,直线与的另一个交点为,直线与轴的交点为,直线与的交点为,证明.
(1)求双曲线的方程;
(2)设双曲线的左、右两个顶点分别为为直线上的动点,且不在轴上,直线与的另一个交点为,直线与的另一个交点为,直线与轴的交点为,直线与的交点为,证明.
您最近一年使用:0次