组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 10 道试题
1 . 有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:
甲:7   8   7   9   5   4   9   10   7   4
乙:9   5   7   8   7   6   8   6     7   7
(1)甲、乙两人本次射击的平均成绩分别为多少环?
(2)观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?

   

(3)对于甲、乙的射击成绩除了画出频率分布条形图比较外,还有没有其他方法来说明两组数据的离散程度?
2024-08-20更新 | 31次组卷 | 1卷引用:【导学案】 6.4.2 用样本估计总体的离散程度 课前预习-湘教版(2019)必修(第一册) 第6章 统计学初步
2 . 在某果园的苗圃进行果苗病虫害调查,随机调查了200棵受到某病虫害的果苗,并测量其高度(单位:,得到如下的样本数据的频率分布直方图.

(1)估计该苗圃受到这种病虫害的果苗的平均高度(同一组中的数据用该组区间的中点值为代表);
(2)估计该苗圃一棵受到这种病虫害的果苗高度位于区间的概率;
(3)已知该苗圃的果苗受到这种病虫害的概率为,果苗高度位于区间的棵数占该果苗总棵数的.从该苗圃中任选一棵高度位于区间的果苗,求该棵果苗受到这种病虫害的概率(以样本数据中受到病虫害果苗的高度位于各区间的频率作为受到病虫害果苗的高度位于该区间的概率).
2024-02-29更新 | 1078次组卷 | 9卷引用:8.1 条件概率(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
3 . 某高中为了了解高中学生暑假期间阅读古典名著的时间(小时/每周)和他们的语文成绩(分)的关系,某实验小组做了调查,得到一些数据(表一).
表一
编号12345
学习时间247710
语文成绩829395108122
(1)请根据所给数据求出语文成绩的平均数和方差;
(2)基于上述调查,学校为了确认学生喜欢阅读古典名著与语文成绩的关系,抽样调查了200位学生.按照是否喜欢阅读古典名著与语文成绩是否优秀统计,得到下列数据,请依据表中数据及小概率值的独立性检验,分析“喜欢阅读古典名著与语文成绩优秀”是否有关.
表二
语文成绩优秀语文成绩不优秀合计
喜欢阅读7525100
不喜欢阅读5545100
合计13070200
0.100.050.010
2.7063.8416.635
2024-02-20更新 | 896次组卷 | 3卷引用:9.2 独立性检验(五大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
4 . 从某企业生产的某种产品中随机抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组的数据用该组区间的中点值作为代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差,为监控该产品的生产质量,每天抽取10个产品进行检测,若出现了质量指标值在之外的产品,就认为这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查.
①假设生产状态正常,记表示一天内抽取的10个产品中尺寸在之外的产品数,求
②请说明上述监控生产过程方法的合理性.
附:
2024-02-20更新 | 1047次组卷 | 4卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
智能选题,一键自动生成优质试卷~
5 . 大学生刘铭去某工厂实习,实习结束时从自己制作的某种零件中随机选取了10个样品,测量每个零件的横截面积(单位:)和耗材量(单位:),得到如下数据:

样本号

1

2

3

4

5

6

7

8

9

10

总和

零件的横截面积

0.03

0.05

0.04

0.07

0.07

0.04

0.05

0.06

0.06

0.05

0.52

耗材量

0.24

0.40

0.23

0.55

0.50

0.34

0.35

0.45

0.43

0.41

3.9

并计算得
(1)估算刘铭同学制作的这种零件平均每个零件的横截面积以及平均一个零件的耗材量;
(2)求刘铭同学制作的这种零件的横截面积和耗材量的样本相关系数(精确到0.01).
附:相关系数
2024-01-26更新 | 522次组卷 | 7卷引用:第05讲 第八章 成对数据的统计分析 章末重点题型大总结-【帮课堂】2023-2024学年高二数学同步学与练(人教A版2019选择性必修第三册)
6 . 坐位体前屈是中小学体质健康测试项目,主要测试学生躯干、腰、髋等部位关节韧带和肌肉的伸展性、弹性及身体柔韧性,在对某高中1500名高三年级学生的坐位体前屈成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高三年级学生中男生有900人,且抽取的样本中男生的平均数和方差分别为13.2cm和13.36,女生的平均数和方差分别为15.2cm和17.56.
(1)求抽取的总样本的平均数;
(2)试估计高三年级全体学生的坐位体前屈成绩的方差.
参考公式:总体分为2层,分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:.记总样本的平均数为,样本方差为
2023-02-19更新 | 1202次组卷 | 9卷引用:【导学案】 6.4.2 用样本估计总体的离散程度 课前预习-湘教版(2019)必修(第一册) 第6章 统计学初步
7 . 在一次高三年级统一考试中,数学试卷有一道满分为10分的选做题,学生可以从两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名学生的选做题成绩中随机抽取一个容量为10的样本,为此将900名学生的选做题的成绩随机编号为001,002,,900.
(1)若采用随机数法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读数,每次读取三位随机数,一行数读完之后接下一行左端写出样本编号的中位数.
05   26   93   70   60       22   35   85   15   13       92   03   51   59   77
59   56   78   06   83       52   91   05   70   74       07   97   10   88   23
09   98   42   99   64       61   71   62   99   15       06 1   29   16   93
58   05   77   09   51       51   26   87   85   85       54   87   66   47   54
73   32   08   11   12       44   95   92   63   16       29   56   24   29   48
26   99   61   65   53       58   37   78   80   70       42   10   50   67   42
32   17   55   85   74       94   44   67   16   94       14   65   52   68   75
87   59   36   22   41       26   78   63   06   55       13   08   27   01   50
15   29   39   39   43
(2)若采用分层随机抽样,按照学生选择题目或题目,将成绩分为两层,且样本中选择题目的成绩有8个,平均数为7,方差为4;样本中选择题目的成绩有2个,平均数为8,方差为1.试用样本估计该校900名学生的选做题得分的平均数与方差.
2022-03-21更新 | 853次组卷 | 10卷引用:第7课时 课前 总体离散趋势的估计
8 . 2020年某地在全国志愿服务信息系统注册登记志愿者8万多人.2019年7月份以来,共完成1931个志愿服务项目,8900多名志愿者开展志愿服务活动累计超过150万小时.为了了解此地志愿者对志愿服务的认知和参与度,随机调查了500名志愿者每月的志愿服务时长(单位:小时),并绘制如图所示的频率分布直方图.

(1)求这500名志愿者每月志愿服务时长的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该地志愿者每月服务时长服从正态分布,其中近似为样本平均数近似为样本方差.一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若,令,则,且
(ⅰ)利用直方图得到的正态分布,求
(ⅱ)从该地随机抽取20名志愿者,记表示这20名志愿者中每月志愿服务时长超过10小时的人数,求(结果精确到0.001)以及的数学期望.
参考数据:.若,则
2021-03-23更新 | 3337次组卷 | 16卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
9 . 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图;

(1)求高一参赛学生的成绩的众数、中位数;
(2)求高一参赛学生的平均成绩.
10 . 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228

(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
2019-01-30更新 | 14789次组卷 | 50卷引用:【导学案】 6.4.3 用频率分布直方图估计总体分布 课前预习-湘教版(2019)必修(第一册) 第6章 统计学初步
共计 平均难度:一般