组卷网 > 知识点选题 > 写出简单离散型随机变量分布列
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 14 道试题
1 . 不透明的袋子中装有6个红球,3个黄球,这些球除颜色外其他完全相同.从袋子中随机取出4个小球.
(1)求取出的红球个数大于黄球个数的概率;
(2)记取出的红球个数为X,求X的分布列与期望.
7日内更新 | 176次组卷 | 1卷引用:吉林省吉林市第一中学等校2023-2024学年高二下学期5月期中联考数学试题
2 . 第22届亚运会在中国杭州举行,中国代表团斩获201枚金牌,稳居榜首.为了普及亚运会知识,某校组织了亚运会知识竞赛,设置了ABC三套不同试卷.现将每份试卷分别装入大小、外观均相同的竹筒中,再放入甲、乙两个抽题箱内,其中甲箱装有A卷竹筒4个、B卷竹筒3个、C卷竹筒2个、乙箱装有A卷竹筒2个、B卷竹筒2个、C卷竹筒5个.
(1)若从甲箱中取出一个竹筒,求该竹筒装有A卷的概率.
(2)若从甲、乙箱中各取出一个竹筒,记取出的装有B卷的竹筒数为随机变量,求的分布列与数学期望.
(3)若先从甲箱中随机取出一个竹筒放入乙箱,再从乙箱中随机取出一个竹筒,求从乙箱取出的竹筒装有C卷的概率.
2024-05-27更新 | 1076次组卷 | 2卷引用:吉林省白山市抚松县第一中学2023-2024学年高二下学期5月期中考试数学试题
3 . 现有4个分别标有甲、乙、丙、丁的盒子和4个相同的小球.
(1)将4个球全部随机放入四个盒子中,且每个盒子容纳球数不限,记盒子甲中的小球个数为随机变量X,求X的分布列和数学期望
(2)公司提前10天公布了年会小游戏规则:每轮在2米开外将4个小球分别投向4个盒子,投完4个小球即一轮结束,三轮为一局,三局结束后累计投进盒子的球数超过6个就中奖.小李为了带动组员积极性,每天利用午休时练习投球,每次三局,随着投球的视角和力度的把控,水平逐渐得到提高,现将其前7天每天累计投进盒子的球个数y和时间t(第t天用编号t表示)绘制下表:

时间(t

1

2

3

4

5

6

7

累计投入球数(y

3

4

3

4

7

6

8

其中累计投进盒子的球数(y)与时间(t)具有线性相关关系,求累计投进盒子的球的个数y关于时间t的经验回归方程;(精确到0.01)
(3)试估算第10天能投进盒子的累计球数.(四舍五入取整数)
参考公式:.
2024-04-05更新 | 206次组卷 | 1卷引用:吉林省长春市东北师范大学附属中学2023-2024学年高二下学期3月月考数学试题
4 . 现有两组数据,组:组:.先从组数据中任取3个,构成数组,再从组数据中任取3个,构成数组,两组抽取的结果互不影响.
(1)求数组的数据之和不大于8且数组的数据之和大于8的概率;
(2)记,其中表示数组中最小的数,表示数组中最大的数,求的分布列以及数学期望.
智能选题,一键自动生成优质试卷~
5 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查居民对两会相关知识的了解情况,某小区开展了两会知识问答活动,现将该小区参与该活动的240位居民的得分(满分100分)进行了统计,得到如下的频率分布直方图.

   

(1)若此次知识问答的得分X服从,其中近似为参与本次活动的240位居民的平均得分(同一组中的数据用该组区间的中点值代表),求的值;
(2)中国移动为支持本次活动提供了大力支持,制定了如下奖励方案:参与本次活动得分低于的居民获得一次抽奖机会,参与本次活动得分不低于的居民获得两次抽奖机会,每位居民每次有的机会抽中一张10元的话费充值卡,有的机会抽中一张20元的话费充值卡,假设每次抽奖相互独立,假设该小区居民王先生参与本次活动,求王先生获得的话费充值卡的总金额Y(单位:元)的概率分布列,并估计本次活动中国移动需要准备的话费充值卡的总金额(单位:元)
参考数据:.
2024-03-17更新 | 760次组卷 | 6卷引用:吉林省长春市绿园区长春市文理高中2023-2024学年高二下学期4月月考数学试题
6 . 某高中学校为了解学生参加体育锻炼的情况,统计了全校所有学生在一年内每周参加体育锻炼的次数,现随机抽取了60名同学在某一周参加体育锻炼的数据,结果如下表:
一周参加体育锻炼次数01234567合计
男生人数1245654330
女生人数4556432130
合计579111086460
(1)若将一周参加体育锻炼次数为3次及3次以上的,称为“经常锻炼”,其余的称为“不经常锻炼”.请完成以下列联表,并依据小概率值的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;
性别锻炼合计
不经常经常
男生
女生
合计
(2)若将一周参加体育锻炼次数为0次的称为“极度缺乏锻炼”,“极度缺乏锻炼”会导致肥胖等诸多健康问题.以样本频率估计概率,在全校抽取20名同学,其中“极度缺乏锻炼”的人数为,求
(3)若将一周参加体育锻炼6次或7次的同学称为“运动爱好者”,为进一步了解他们的生活习惯,在样本的10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为,求的分布列和数学期望.
附:
0.10.050.01
2.7063.8416.635
2024-03-13更新 | 2473次组卷 | 12卷引用:吉林省长春外国语学校2023-2024学年高二下学期期中考试数学试题
7 . 为了更好地推广冰雪体育运动项目,某中学要求每位同学必须在高中三年的每个冬季学期选修滑冰、滑雪、冰壶三类体育课程之一,且不可连续选修同一类课程,若某生在选修滑冰后,下一次选修滑雪的概率为:在选修滑雪后,下一次选修冰壶的概率为,在选修冰壶后,下一次选修滑冰的概率为.
(1)若某生在高一冬季学期选修了滑雪,求他在高三冬季学期选修滑冰的概率:
(2)若某生在高一冬季学期选修了滑冰,设该生在高中三个冬季学期中选修滑冰课程的次数为随机变量X,求X的分布列及期望,
2024-01-29更新 | 1853次组卷 | 3卷引用:吉林省长春市五校2023-2024学年高三上学期联合模拟考试数学试题
8 . 俗话说:“人配衣服,马配鞍”.合理的穿搭会让人舒适感十足,给人以赏心悦目的感觉.张老师准备参加某大型活动,他选择服装搭配的颜色规则如下:将一枚骰子连续投掷两次,两次的点数之和为3的倍数,则称为“完美投掷”,出现“完美投掷”,则记;若掷出的点数之和不是3的倍数,则称为“不完美投掷”,出现“不完美投掷”,则记;若,则当天穿深色,否则穿浅色.每种颜色的衣物包括西装和休闲装,若张老师选择了深色,再选西装的可能性为,而选择了浅色后,再选西装的可能性为
(1)求出随机变量的分布列,并求出期望及方差;
(2)求张老师当天穿西装的概率.
2024-01-13更新 | 2071次组卷 | 11卷引用:吉林省白山市2024届高三一模数学试题
9 . 在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现在6名男志愿者和4名女志愿者,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(1)求接受甲种心理暗示的志愿者中包含但不包含的概率;
(2)用表示接受乙种心理暗示的女志愿者人数,求的分布列及数学期望、方差.
2024-01-12更新 | 1020次组卷 | 5卷引用:吉林省“BEST合作体”2023-2024学年高二上学期期末考试数学试题
10 . 品酒师需要定期接受品酒鉴别能力测试,测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求按品质优劣为它们排序,经过一段时间,等他等记忆淡忘之后,再让他品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.设在第一次排序时被排为1,2,3,…,nn种酒,在第二次排序时的序号为,并令,称X是两次排序的偏离度.评委根据一轮测试中的两次排序的偏离度的高低为其评分.
(1)当时,若等可能地为1,2,3的各种排列,求X的分布列;
(2)当时,
①若等可能地为1,2,3,4的各种排列,计算的概率;
②假设某品酒师在连续三轮测试中,都有(各轮测试相互独立),你认为该品酒师的鉴别能力如何,请说明理由.
共计 平均难度:一般