组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 16 道试题
1 . 已知随机变量X的分布列为

X

0

1

x

P

p


(1)求的值;
(2)若,求的值.
2023-08-01更新 | 940次组卷 | 21卷引用:高中数学人教A版选修2-3 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差
2 . 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
2022-11-08更新 | 2018次组卷 | 32卷引用:专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》
3 . 为了响应大学毕业生自主创业的号召,小李毕业后开了水果店,水果店每天以每个5元的价格从农场购进若干西瓜,然后以每个10元的价格出售.如果当天卖不完,剩下的西瓜作赠品处理.
(1)若水果店一天购进16个西瓜,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)水果店记录了100天西瓜的日需求量(单位:个),整理得下表:
日需求量14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
①若水果店一天购进16个西瓜,表示当天的利润(单位:元),求的分布列、数学期望及方差;
②若水果店计划一天购进16个或17个西瓜,你认为应购进16个还是17个?请说明理由.
2022-07-25更新 | 1052次组卷 | 15卷引用:广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)2018届高三下学期第三次联考数学(理)试题
4 . 有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如表所示.

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/千元

5

6

7

8

月薪/千元

4

6

8

10

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)若一人去应聘甲公司的C职位,另一人去应聘乙公司的C职位,记这两人被录用的人数和为,求的分布列.
(2)若小方和小芳分别被甲、乙两家公司录用,求小方月薪高于小芳月薪的概率.
(3)根据甲、乙两家公司的聘用信息,如果你是求职者,你会选择哪一家公司?说明理由.
2022-06-09更新 | 982次组卷 | 8卷引用:【校级联考】福建省三明市三地三校2018-2019学年高二下学期期中联考数学(理)试题
智能选题,一键自动生成优质试卷~
5 . 某公司计划在2022年年初将1000万元用于投资,现有两个项目供选择.项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为.项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为.
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:
2021-09-24更新 | 735次组卷 | 11卷引用:湖北襄樊四中2010年五月高考适应性考试数学试卷(理科)
6 . 在全球关注的抗击“新冠肺炎”中,某跨国科研中心的一个团队,研制了甲、乙两种治疗“新冠肺炎”新药,希望知道哪种新药更有效,为此进行动物试验,试验方案如下:
第一种:选取共10只患病白鼠,服用甲药后某项指标分别为:84,87,89,91,92,92,86,89,90,90;
第二种:选取共10只患病白鼠,服用乙药后某项指标分别为:81,87,83,82,80,90,86,89,84,79;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,求其中服药有效的只数不超过2只的概率;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有90%变为正常白鼠,但正常白鼠仍有变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用次甲药后此实验室正常白鼠的只数为.
(ⅰ)求并写出的关系式;
(ⅱ)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数的值.
2020-12-20更新 | 1033次组卷 | 2卷引用:江西省余干县新时代学校2020-2021学年高二上学期阶段测试(二)数学(理)试题
7 . 某超市试销某种商品一个月,获得如下数据:
日销售量(件)
频率

试销结束后(假设该商品的日销售量的分布规律不变),超市决定正式营销这种商品.设某天超市开始营业时有该商品件,当天营业结束后检查存货,若发现存货少于件,则当天进货补充至件,否则不进货.将频率视为概率.
求当天商品进货的概率.
为第二天开始营业时该商品的件数.
得分布列.
得数学期望与方差.
2020-03-25更新 | 723次组卷 | 3卷引用:甘肃省天水市第一中学2018-2019学年高二下学期第一次段考数学(理)试题
8 . 为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表:
             比例        学校
等级
学校A学校B学校C学校D学校E学校F学校G学校H
优秀8%3%2%9%1%22%2%3%
良好37%50%23%30%45%46%37%35%
及格22%30%33%26%22%17%23%38%
不及格33%17%42%35%32%15%38%24%

(1)从8所学校中随机选出一所学校,求该校为先进校的概率;
(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;
(3)设8所学校优秀比例的方差为,良好及其以下比例之和的方差为,比较的大小.(只写出结果)
2020-02-09更新 | 519次组卷 | 8卷引用:2020届北京市通州区高三第一学期期末考试数学试题
9 . 一个小商店从一家有限公司购进21袋白糖,每袋白糖的标准质量是500g,为了了解这些白糖的质量情况,称出各袋白糖的质量(单位:g)如下:
486   495   496   498   499   493   493   498   484   497   504   489   495   503
499   503   509   498   487   500   508
(1)21袋白糖的平均质量是多少?标准差s是多少?
(2)质量位于之间有多少袋白糖?所占的百分比是多少?
2020-02-01更新 | 205次组卷 | 3卷引用:人教A版(2019) 必修第二册 逆袭之路 第九章 9.2 用样本估计总体 9.2.4 总体离散程度的估计
10 . 本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
降水量X




工期延误天数
0
2
6
10
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9. 求:
(Ⅰ)工期延误天数的均值与方差;
(Ⅱ)在降水量X至少是的条件下,工期延误不超过6天的概率.
2019-01-30更新 | 2585次组卷 | 18卷引用:2012年全国普通高等学校招生统一考试理科数学(湖北卷)
共计 平均难度:一般