组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 49 道试题
1 . 已知随机变量X的分布列为

X

0

1

x

P

p


(1)求的值;
(2)若,求的值.
2023-08-01更新 | 940次组卷 | 21卷引用:西藏自治区拉萨市拉萨那曲第二高级中学2018-2019学年高二下学期期末数学(理)试题
2 . 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
2022-11-08更新 | 2018次组卷 | 32卷引用:专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》
3 . 为了响应大学毕业生自主创业的号召,小李毕业后开了水果店,水果店每天以每个5元的价格从农场购进若干西瓜,然后以每个10元的价格出售.如果当天卖不完,剩下的西瓜作赠品处理.
(1)若水果店一天购进16个西瓜,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)水果店记录了100天西瓜的日需求量(单位:个),整理得下表:
日需求量14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
①若水果店一天购进16个西瓜,表示当天的利润(单位:元),求的分布列、数学期望及方差;
②若水果店计划一天购进16个或17个西瓜,你认为应购进16个还是17个?请说明理由.
2022-07-25更新 | 1052次组卷 | 15卷引用:广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)2018届高三下学期第三次联考数学(理)试题
4 . 甲口袋里有大小相同编号不同的2个黑球和3个白球,乙口袋里有大小相同编号不同的3个黑球和2个白球,现从甲口袋中取出3个球,记黑球个数为,从乙口袋中也取出3个球,记黑球个数为.
(1)求时的概率;
(2)若,求随机变量的数学期望的方差.
2021-09-07更新 | 216次组卷 | 1卷引用:浙江省温州市瑞安中学2020-2021学年高二上学期期末数学试题
智能选题,一键自动生成优质试卷~
5 . 旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求选择甲线路旅游团数的分布列、均值及方差.
6 . 某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.

公园

获得签名人数

45

60

30

15

然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(1)求此活动中各公园幸运之星的人数;
(2)若乙公园中每位幸运之星对每个问题答对的概率均为,求乙公园中恰好2位幸运之星获得纪念品的概率;
(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为,求的分布列、期望及方差.
7 . 2020突如其来的疫情让我们经历了最漫长、最特殊的一个假期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后某校进行了摸底考试,某数学教师为了调查高二学生这次摸底考试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的等高条形图:

(1)根据等高条形图填写下面列联表,并根据列联表判断能否在犯错误的概率不超过0.05的前提下认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;

数学成绩不超过120分

数学成绩超过120分

总计

每天在线学习数学不超过1小时

25

每天在线学习数学超过1小时

总计

45


(2)从被抽查的,且这次数学成绩超过120分的学生中,再随机抽取3人,求抽取的3人中每天在线学习数学的时长超过1小时的人数的分布列与数学期望.
附临界值表

0.050

0.010

0.001

3.841

6.635

10.828


参考公式:,其中.
2020-08-03更新 | 375次组卷 | 1卷引用:山东省聊城市2019—2020学年度高二下学期期末教学质量抽测数学试题
8 . 某地区为了解党员同志每天的学习强国的积分情况,抽取了20名同志,其中男同志10名,女同志10名,他们的积分用茎叶图表示如下:积分在40分(含40分)以上的为积极学习的党员同志.

(1)求出男同志学习强国积分的平均值和女同志积极学习的频率,
(2)用频率估计概率,从该地区随机抽取3名党员,设积极学习的党员同志人数为,求的数学期望和方差.
9 . 1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日,中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在两名学生中间产生,该班委设计了一个测试方案:两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生能正确回答其中的4个问题,而学生能正确回答每个问题的概率均为两名学生对每个问题回答正确与否都是相互独立、互不影响的.
(1)求恰好答对两个问题的概率;
(2)求恰好答对两个问题的概率;
(3)设答对题数为答对题数为,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.
2020-07-27更新 | 443次组卷 | 4卷引用:山东省枣庄市2019-2020学年高二(下)期末数学试题
10 . 某投资公司在2020年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利40%,也可能亏损10%,且这两种情况发生的概率分别为
项目二:通信设备据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
2020-07-05更新 | 1492次组卷 | 4卷引用:山东省泰安市新泰一中2019-2020学年高二下第一次质量检测考试数学试题
共计 平均难度:一般