组卷网 > 知识点选题 > 指定区间的概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 2021年3月1日,国务院新闻办公室举行新闻发布会,工业和信息化部长肖亚庆先生提出了芯片发展的五项措施,进一步激励国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入(亿元)与科技升级直接纯收益(亿元)的数据统计如下:

序号

1

2

3

4

5

6

7

8

9

10

11

12

2

3

4

6

8

10

13

21

22

23

24

25

13

22

31

42

50

56

58

68.5

68

67.5

66

66

时,建立了的两个回归模型:模型①:;模型②:;当时,确定满足的线性回归方程为
(1)根据下列表格中的数据,比较当时模型①、②的相关指数的大小,并选择拟合精度更高、更可靠的模型.

回归模型

模型①

模型②

回归方程

182.4

79.2

(附:刻画回归效果的相关指数
(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,应用(1)的结论,比较科技升级投入17亿元与20亿元时公司实际收益的大小.
(附:线性回归方程的系数关系:
(3)科技升级后,“麒麟”芯片的效率大幅提高,经实际试验得大致服从正态分布.公司对科技升级团队的奖励方案如下:若芯片的效率不超过,不予奖励:若芯片的效率超过,但不超过,每部芯片奖励2元;若芯片的效率超过,每部芯片奖励4元.记为每部芯片获得的奖励,求(精确到0.01).
(附:若随机变量,则
2 . 今年九月,九龙坡区创建全国文明城区活动正式启动,中央文明办对九龙坡辖区内的市民进行了创建文明城区相关知识(文明城区宣传、建党100周年、社会主义核心价值观、红色基因教育等)网络问卷调查,每一位市民只有一次答题机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,绘制成如下的频率分布直方图

(1)求的值;
(2)由频率分布表直方图可以认为,此次问卷调查的得分近似服从正态分布近似为1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
(3)在(2)的条件下,文明办为此次参加问卷调查的市民制定如下的奖励方案:
①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次赠送的随机话费和对应的概率为:
赠送的随机话费(单位:元)2040
概率
(单位:元)为该市民参加问卷调查获赠的话费,求的分布列和数学期望.
附:.若,则①
2021-10-08更新 | 420次组卷 | 2卷引用:重庆市育才中学2022届高三上学期高考适应性考试(三)数学试题
3 . 为抢占市场,特斯拉电动车近期进行了一系列优惠促销方案.要保证品质兼优,特斯拉上海工厂在车辆出厂前抽取100辆Model3型汽车作为样本进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:

(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代替).
(2)根据大量的测试数据,可以认为Model3这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差s的近似值为50.用样本平均数作为的近似值,用样本标准差s作为的估计值,现从生产线下任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
(3)为迅速抢占市场举行促销活动,特斯拉销售公司现面向意向客户推出“玩游戏,赢大奖,送车模”活动,客户可根据拋掷硬币的结果,指挥车模在方格图上行进,若车模最终停在“幸运之神”方格,则可获得购车优惠券6万元;若最终停在“赠送车模”方格时,则可获得车模一个.已知硬币出现正、反面的概率都是0.5,方格图上标有第0格、第1格、第2格、……、第20格.车模开始在第0格,客户每掷一次硬币,车模向前移动一次.若掷出正面,车模向前移动一格(从kk+1),若掷出反面,车模向前移动两格(从kk+2),直到移到第19格(幸运之神)或第20格(赠送车模)时游戏结束.设车模移到第格的概率为,试证明是等比数列;若有6人玩游戏,每人参与一次,求这6人获得优惠券总金额的期望值(结果精确到1万元).
参考数据:若随机变量服从正态分布,则
2021-02-16更新 | 3534次组卷 | 6卷引用:重庆市西南大学附属中学校2020-2021学年高二上学期期末数学试题
共计 平均难度:一般