组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 161 道试题
1 . 发展特色农业是我国农业结构战略调整的要求,某县为了响应国家的号召,特地承包了一块土地,已知土地的使用面积x(单位:公顷)与相应的管理时间y(单位:月)的关系如下表所示:
土地使用面积x12345
管理时间y811142423
调查了某村300名村民参与管理的意愿,得到列联表的部分数据如下表所示:
愿意参与管理不愿意参与管理总计
男性村民14060
女性村民40
总计
(1)画出散点图,判断土地使用面积x与管理时间y是否线性相关,并根据相关系数r说明相关关系的强弱;(若,认为两个变量有很强的线性相关性,r值精确到0.001)
(2)补全列联表,并判断是否有99.9%的把握认为该村的村民的参与管理意愿与性别有关.
参考公式:
参考数据:.
2 . 求作一个立方体,使其体积等于已知立方体体积的2倍,这就是历史上有名的立方倍积问题.1837年法国数学家闻脱兹尔证明了立方倍积问题不能只用直尺与圆规作图来完成,不过人们发现,跳出直尺与圆规作图的框框,可以找到不同的作图方法.如图是柏拉图(公元前427—公元前347年)的方法:假设已知立方体的边长为,作两条互相垂直的直线,相交于点,在一条直线上截取,在另一条直线上截取,在直线上分别取点,使(只要移动两个直角尺,使一个直角尺的边缘通过点,另一个直角尺的边缘通过点,并使两直角尺的另一边重合,则两直角尺的直角顶点即为),则线段即为所求立方体的一边.以直线分别为轴、轴建立直角坐标系,若圆经过点,则圆的方程为______.

2023-12-29更新 | 166次组卷 | 2卷引用:2.4.1 圆的标准方程——课后作业(基础版)
3 . 已知正方体中,PQ分别为对角线BD上的点,且.

(1)作出平面PQC和平面的交线(保留作图痕迹),并求证:平面
(2)若RAB上的点,当的值为多少时,能使平面平面?请给出证明.
2021-11-19更新 | 1457次组卷 | 13卷引用:【课后练】10.4.1平面与平面平行 课后作业-沪教版(2020)必修第三册第10章 空间直线与平面
4 . 在正方体中,是棱的中点.

(1)作出平面与平面的交线,保留作图痕迹;
(2)在棱上是否存在一点,使得平面,若存在,说明点的位置,若不存在,请说明理由.
2021-10-08更新 | 722次组卷 | 9卷引用:2023版 北师大版(2019) 选修第一册 突围者 第三章 第五节 数学探究活动(一):正方体截面探究
解答题-作图题 | 适中(0.65) |
名校
5 . 如图,在长方体中,分别为中点.

(1)经过作平面,平面与长方体六个表面所截的截面可能是边形,请根据的不同的取值分别作出截面图形形状(每种情况找一个代表类型,例如只需要画一种,下面给了四幅图,可以不用完,如果不够请自行增加),保留作图痕迹;
(2)若为直线上的一点,且,求过截面图形的周长.
6 . (1)求右焦点坐标是,且经过点的椭圆的标准方程;
(2)已知椭圆的方程是.设斜率为的直线,交椭圆 两点,的中点为.证明:当直线平行移动时,动点在一条过原点的定直线上;
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.

2020-05-26更新 | 547次组卷 | 4卷引用:沪教版(2020) 选修第一册 领航者 第2章 2.2椭圆 第2课时 椭圆的性质(1)
7 . 如图,在四棱锥的底面ABCD中,.回答下面的问题:

(1)在侧面内能否作一条线段,使其与DC平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由;
(2)在侧面PBC中能否作出一条线段,使其与AD平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由.
2021-11-12更新 | 309次组卷 | 6卷引用:第十一章 立体几何初步 11.3 空间中的平行关系 11.3.3 平面与平面平行
8 . 某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的众数和中位数和平均数.
2022-10-25更新 | 1276次组卷 | 8卷引用:13.4统计图表(作业)(夯实基础+能力提升)-【教材配套课件+作业】2022-2023学年高二数学精品教学课件(沪教版2020必修第三册)
9 . 北京2022年冬奥会于2022年2月4日至2022年2月20日在中国北京市和中国河北省张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京、张家口同为主办城市,也是中国继北京奥运会、南京青奥会之后第三次举办奥运赛事.北京冬奥组委对报名参加北京冬奥会志愿者的人员开展冬奥会志愿者的培训活动,并在培训结束后进行了一次考核.为了解本次培训活动的效果,从中随机抽取80名志愿者的考核成绩,根据这80名志愿者的考核成绩,得到的统计图表如下所示.

男志愿者考核成绩频率分布直方图
女志愿者考核成绩频率分布表

分组

频数

频率

[75,80)

2

0.05

[80,85)

13

0.325

[85,90)

12

0.3

[90,95)

a

m

[95,100]

b

0.075

若参加这次考核的志愿者考核成绩在[90,100]内,则考核等级为优秀.
(1)分别求这次培训考核等级为优秀的男、女志愿者人数;
(2)补全下面的2×2列联表,并判断是否有95%的把握认为考核等级是否是优秀与性别有关.

                  性别


考核等级

优秀

非优秀

总计

总计

2022-08-29更新 | 68次组卷 | 1卷引用:2023版 北师大版(2019) 选修第一册 名师精选卷 第十八单元 独立性检验问题
10 . 有甲、乙两个班级进行数学考试,若规定成绩在85分及以上为优秀,85分以下为非优秀,统计成绩后,得到如下的列联表.

单位:人

班级

数学成绩

合计

优秀

非优秀

甲班

10

乙班

30

合计

105

已知从105个学生中随机抽取1人,其数学成绩为优秀的概率为
(1)请根据已知条件补全上面的列联表;
(2)依据的独立性检验,能否认为学生的数学成绩与班级有关?
(3)若按下面的方法从甲班数学成绩为优秀的学生中抽取1人:把甲班数学成绩为优秀的10名学生按2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的编号(注:出现的点数之和为12时,被抽取人的编号为2),试求抽到4号或9号的概率.
2022-03-14更新 | 212次组卷 | 2卷引用:人教A版(2019) 选修第三册 名师精选 第七单元 列联表与独立性检验
共计 平均难度:一般