1 . 设是定义在上的函数,满足,且对任意,(为常数),点在曲线上,为数列的前项和,则下列说法正确的有( ).
A.的解析式可能为 |
B.若,则 |
C.若在上是增函数,则 |
D.若,则 |
您最近一年使用:0次
2 . 若数列和的项数均为,则将数列和的距离定义为.
(1)求数列1,3,5,6和数列2,3,10,7的距离;
(2)记A为满足递推关系的所有数列的集合,数列和为A中的两个元素,且项数均为.若,,数列和的距离,求m的最大值;
(3)记S是所有7项数列(其中,或1)的集合,,且T中的任何两个元素的距离大于或等于3.求证:T中的元素个数小于或等于16.
(1)求数列1,3,5,6和数列2,3,10,7的距离;
(2)记A为满足递推关系的所有数列的集合,数列和为A中的两个元素,且项数均为.若,,数列和的距离,求m的最大值;
(3)记S是所有7项数列(其中,或1)的集合,,且T中的任何两个元素的距离大于或等于3.求证:T中的元素个数小于或等于16.
您最近一年使用:0次
2024-05-20更新
|
382次组卷
|
3卷引用:贵州省六盘水市2023-2024学年高二下学期5月期中质量监测数学试题
3 . 已知椭圆的焦点坐标,且过点.
(1)求椭圆的标准方程;
(2)直线与椭圆交于,两点,且,关于原点的对称点分别为,,若是一个与无关的常数,求此时的常数及四边形面积的最大值.
(1)求椭圆的标准方程;
(2)直线与椭圆交于,两点,且,关于原点的对称点分别为,,若是一个与无关的常数,求此时的常数及四边形面积的最大值.
您最近一年使用:0次
2024-01-24更新
|
315次组卷
|
3卷引用:贵州省铜仁市2023-2024学年高二上学期1月期末质量监测数学试题
贵州省铜仁市2023-2024学年高二上学期1月期末质量监测数学试题江西省上高二中2024届高三适应性考试数学试卷(已下线)湖北省武汉市(武汉六中)部分重点中学2024届高三第二次联考数学试题变式题17-22
名校
解题方法
4 . 在平面直角坐标系xOy中,已知点,,设的内切圆与AC相切于点D,且,记动点C的轨迹为曲线T.
(1)求T的方程;
(2)设过点的直线l与T交于M,N两点,已知动点P满足,且,若,且动点Q在T上,求的最小值.
(1)求T的方程;
(2)设过点的直线l与T交于M,N两点,已知动点P满足,且,若,且动点Q在T上,求的最小值.
您最近一年使用:0次
2022-05-27更新
|
3182次组卷
|
5卷引用:贵州省贵阳市“三新”改革联盟校2022-2023学年高二上学期月考(六)数学试题
贵州省贵阳市“三新”改革联盟校2022-2023学年高二上学期月考(六)数学试题湖北省武汉市新洲区第一中学2022-2023学年高二下学期开学收心考试数学试题名校联盟山东省优质校2022届高三毕业班5月模拟考试数学试题(已下线)专题6 圆锥曲线硬解定理 微点2 圆锥曲线硬解定理综合训练(已下线)重难点15七种圆锥曲线的应用解题方法-3
5 . 一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内做往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
您最近一年使用:0次
2016-12-03更新
|
4986次组卷
|
15卷引用:贵州省遵义市南白中学2022-2023学年高二下学期第一次联考数学试题
贵州省遵义市南白中学2022-2023学年高二下学期第一次联考数学试题北京市北京一零一中学2019-2020学年高二第一学期期末考试数学试题北京市101中学2019-2020学年上学期高二年级期末考试数学试题安徽省马鞍山市第二中学2020-2021学年高二上学期期末理科数学试题2015年全国普通高等学校招生统一考试理科数学(湖北卷)2015年全国普通高等学校招生统一考试文科数学(湖北卷)(已下线)上海市华东师范大学第二附属中学2017-2018学年高三上学期10月月考数学试题(已下线)专题29 圆锥曲线的综合问题-十年(2011-2020)高考真题数学分项(已下线)专题22 圆锥曲线的“三定”与探索性问题(讲)-2021年高三数学二轮复习讲练测(新高考版)(已下线) 专题26 圆锥曲线的“三定”与探索性问题(讲)-2021年高三数学二轮复习讲练测(文理通用)(已下线)专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题(已下线)专题24 解析几何解答题(文科)-4(已下线)专题24 解析几何解答题(理科)-3专题36平面解析几何解答题(第一部分)专题37平面解析几何解答题(第一部分)