组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 7 道试题
18-19高一下·湖北襄阳·期中
名校
1 . 中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同样强劲.今年,我国某一企业为了进一步增加市场竞争力,计划在2021年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且,由市场调研知,每手机售价0.7万元,且全年内生产的手机当年能全部销售完.
(1)求2021年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);
(2)2021年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
2020-11-12更新 | 2077次组卷 | 38卷引用:【新东方】杭州新东方高中数学试卷314
19-20高二·全国·课后作业
填空题-双空题 | 较易(0.85) |
2 . 某批发商以每吨20元的价格购进一批建筑材料,若以每吨M元零售,销量N(单位:吨)与零售价M(单位:元)有如下关系:,则该批材料零售价定为_______元时利润最大,利润的最大值为_________元.
2020-12-03更新 | 436次组卷 | 4卷引用:专题5.4 《一元函数的导数及其应用》单元测试卷(B卷提升篇)-2020-2021学年高二数学选择性必修第二册同步单元AB卷(新教材人教A版,浙江专用)
18-19高一下·江苏南京·期中
3 . 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转化为一种可利用的产品.已知该单位每月处理二氧化碳最少400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似表示为yx2-200x+80000,且每处理1吨二氧化碳得到可利用的化工产品价值为100元.
(1)若该单位每月成本(每月成本=每月处理成本-每月可利用的化工产品价值)支出不超过105000元,求月处理量x的取值范围.
(2)该单位每月能否获利?如果能获利,求出能获得的最大利润;如果不能获利,那么国家每月至少补贴多少元,才能使该单位不亏损?
2020-07-18更新 | 368次组卷 | 6卷引用:专题2.2二次函数与一元二次方程、不等式(B卷提升篇)-2020-2021学年高一数学必修一同步单元AB卷(人教A版浙江专用)
4 . 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润(单位:10万元)与营运年数为二次函数关系(如图所示),则每辆客车营运(       )年时,其营运的年平均利润最大.
A.3B.4C.5D.6
2022-10-26更新 | 1685次组卷 | 32卷引用:人教A版(2019) 必修第一册(上) 重难点知识清单 第二章 一元二次函数、方程和不等式 单元学能测评
19-20高一下·四川遂宁·期末
5 . 首届世界低碳经济大会11月17日在南昌召开,本届大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元.
(1)若扣除投资和各种维护费,则从第几年开始获取纯利润?
(2)若干年后企业为了投资其他项目,有两种处理方案:
①纯利润总和最大时,以100万元转让经营权;
②年平均利润最大时以460万元转让经营权,问哪种方案更优?
2020-07-22更新 | 915次组卷 | 4卷引用:第03章不等式(B卷提升篇)-2020-2021学年高二数学必修五同步单元AB卷(人教A版,浙江专用)
19-20高二上·安徽淮北·期末
解答题-应用题 | 适中(0.65) |
6 . 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.
(1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;
(2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?
(用线性规划求解要画出规范的图形及具体的解答过程)
2020-02-27更新 | 481次组卷 | 5卷引用:专题3.1二元一次不等式(组)与简单的线性规划问题(B卷提升篇)-2020-2021学年高二数学必修五同步单元AB卷(人教A版,浙江专用)
9-10高一下·河南郑州·阶段练习
解答题-应用题 | 容易(0.94) |
7 . 某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
产品
消耗量
资源
甲产品(每吨)
乙产品(每吨)
资源限额(每天)
煤(t)
9
4
360
电力(kw·h)
4
5
200
劳动力(个)
3
10
300
利润(万元)
6
12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
2016-11-30更新 | 1025次组卷 | 7卷引用:第03章不等式(A卷基础篇)-2020-2021学年高二数学必修五同步单元AB卷(人教A版,浙江专用)
共计 平均难度:一般