解题方法
1 . 已知椭圆的左、右焦点分别为,离心率为,且经过点.
(1)求的方程;
(2)过且不垂直于坐标轴的直线交于两点,点为的中点,记的面积为的面积为,求的取值范围.
(1)求的方程;
(2)过且不垂直于坐标轴的直线交于两点,点为的中点,记的面积为的面积为,求的取值范围.
您最近一年使用:0次
名校
解题方法
2 . 已知椭圆的离心率为,且过点.
(1)求的方程;
(2)直线交于两点.
(i)点关于原点的对称点为,直线的斜率为,证明:为定值;
(ii)若上存在点使得在上的投影向量相等,且的重心在轴上,求直线的方程.
(1)求的方程;
(2)直线交于两点.
(i)点关于原点的对称点为,直线的斜率为,证明:为定值;
(ii)若上存在点使得在上的投影向量相等,且的重心在轴上,求直线的方程.
您最近一年使用:0次
2024-09-16更新
|
709次组卷
|
2卷引用:福建省福州市2024-2025学年高三上学期第一次质量检测数学试题
名校
解题方法
3 . 已知椭圆C:的焦距为,离心率为.
(1)求C的标准方程;
(2)若,直线l:交椭圆C于E,F两点,且的面积为,求t的值.
(1)求C的标准方程;
(2)若,直线l:交椭圆C于E,F两点,且的面积为,求t的值.
您最近一年使用:0次
2024-09-03更新
|
2469次组卷
|
6卷引用:福建省厦门集美中学2025届高三上学期十月月考数学试卷
名校
解题方法
4 . 椭圆的左、右焦点分别为为椭圆上第一象限内的一点,且与轴相交于点,离心率,若,则( )
A. | B. | C. | D. |
您最近一年使用:0次
名校
5 . 若椭圆的离心率为,则该椭圆的焦距为( )
A. | B. | C.或 | D.或 |
您最近一年使用:0次
2024-06-09更新
|
802次组卷
|
3卷引用:福建省泉州第五中学2024届高三下学期适应性监测(二)数学试题
福建省泉州第五中学2024届高三下学期适应性监测(二)数学试题福建省福州第二中学2023-2024学年高二下学期期末测试数学试卷(已下线)第14讲 椭圆及其方程-【暑假自学课】(人教B版2019选择性必修第一册)
名校
解题方法
6 . 已知椭圆的离心率为,A,B,C分别为椭圆的左顶点,上顶点和右顶点,为左焦点,且的面积为.若P是椭圆M上不与顶点重合的动点,直线AB与直线CP交于点Q,直线BP交x轴于点N.
(1)求椭圆M的标准方程;
(2)求证:为定值,并求出此定值(其中、分别为直线QN和直线QC的斜率).
(1)求椭圆M的标准方程;
(2)求证:为定值,并求出此定值(其中、分别为直线QN和直线QC的斜率).
您最近一年使用:0次
名校
解题方法
7 . 已知椭圆:的离心率为,左、右焦点分别为,,焦距为2,点为椭圆上的点.
(1)求椭圆的方程;
(2)设点A,B在椭圆上,直线PA,PB均与圆:相切,证明:直线AB过定点.
(1)求椭圆的方程;
(2)设点A,B在椭圆上,直线PA,PB均与圆:相切,证明:直线AB过定点.
您最近一年使用:0次
名校
解题方法
8 . 已知椭圆左、右顶点分别为,短轴长为,离心率为.
(1)求椭圆的方程;
(2)若第一象限内一点在椭圆上,且点与外接圆的圆心的连线交轴于点,设,求实数的值.
(1)求椭圆的方程;
(2)若第一象限内一点在椭圆上,且点与外接圆的圆心的连线交轴于点,设,求实数的值.
您最近一年使用:0次
2024-05-23更新
|
410次组卷
|
2卷引用:福建省福州市联盟校2023-2024学年高二下学期期末考试数学试题
名校
9 . 一般地,我们把离心率为的椭圆称为“黄金椭圆”,则下列命题正确的有( )
A.椭圆是“黄金椭圆” |
B.若椭圆是黄金椭圆,则 |
C.设“黄金椭圆”C的左右焦点分别为,存在椭圆C上一点P,使得 |
D.设过原点的直线与焦点在x轴上的“黄金椭圆”分别交于A、B两点,“黄金椭圆”上动点P(异于A,B),设直线PA,PB的斜率分别为,则 |
您最近一年使用:0次
2024-05-22更新
|
859次组卷
|
3卷引用:福建省宁德市博雅培文学校2024-2025学年高二上学期9月月考数学试卷
10 . 已知椭圆的离心率为,点在上.
(1)求椭圆的标准方程;
(2)已知动直线过曲线的左焦点,且与椭圆分别交于,两点,试问轴上是否存在定点,使得为定值?若存在,求出该定点坐标;若不存在,请说明理由.
(1)求椭圆的标准方程;
(2)已知动直线过曲线的左焦点,且与椭圆分别交于,两点,试问轴上是否存在定点,使得为定值?若存在,求出该定点坐标;若不存在,请说明理由.
您最近一年使用:0次