组卷网 > 知识点选题 > 古典概型的概率计算公式
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 103 道试题
1 . 随着春节的临近,小王和小张等4位同学准备互相送祝福.他们每人写了一个祝福的贺卡,这四张贺卡收齐后让每人从中随机抽取一张作为收到的新春祝福,则(       
A.小王和小张恰好互换了贺卡的概率为
B.已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为
C.恰有一个人抽到自己写的贺卡的概率为
D.每个人抽到的贺卡都不是自己写的概率为
2023-01-10更新 | 5491次组卷 | 14卷引用:第七章 随机变量及其分布 (单元测)
2 . 下列说法正确的是(       
A.已知随机变量服从二项分布:,设,则的方差
B.数据的第60百分位数为9
C.若样本数据的平均数为2,则的平均数为8
D.用简单随机抽样的方法从51个个体中抽取2个个体,则每个个体被抽到的概率都是
2023-12-02更新 | 2217次组卷 | 4卷引用:6.4.1二项分布(分层练习)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)
3 . 疫情当下,通过直播带货来助农,不仅为更多年轻人带来了就业岗位,同时也为当地农民销售出了农产品,促进了当地的经济发展.某直播平台的主播现要对6种不同的脐橙进行选品,其方法为首先对这6种不同的脐橙(数量均为1),进行标号为1~6,然后将其放入一个箱子中,从中有放回的随机取两次,每次取一个脐橙,记第一次取出的脐橙的标号为,第二次为,设,其中[x]表示不超过x的最大整数,则(       
A.B.事件互斥
C.D.事件对立
2023-01-05更新 | 1961次组卷 | 13卷引用:湖北省荆州市八县市2022-2023学年高二上学期期末联考数学试题
4 . 某短视频平台以讲故事,赞家乡,聊美食,展才艺等形式展示了丰富多彩的新时代农村生活,吸引了众多粉丝,该平台通过直播带货把家乡的农产品推销到全国各地,从而推进了“新时代乡村振兴”.从平台的所有主播中,随机选取300人进行调查,其中青年人,中年人,其他人群三个年龄段的比例饼状图如图1所示,各年龄段主播的性别百分比等高堆积条形图如图2所示,则下列说法正确的有(       
A.该平台女性主播占比的估计值为0.4
B.从所调查的主播中,随机抽取一位参加短视频剪辑培训,则被抽到的主播是中年男性的概率为0.7
C.按年龄段把所调查的主播分为三层,用分层抽样法抽取20名主播担当平台监管,若样本量按比例分配,则中年主播应抽取6名
D.从所调查的主播中,随机选取一位做为幸运主播,已知该幸运主播是青年人的条件下,又是女性的概率为0.6
2023-04-21更新 | 2054次组卷 | 10卷引用:湖北省孝感市部分学校2023-2024学年高二上学期9月起点考试数学试题
智能选题,一键自动生成优质试卷~
5 . 红黄蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色;等量的红色加蓝色调配出紫色;等量的黄色加蓝色调配出绿色.现有红黄蓝彩色颜料各两瓶,甲从六瓶中任取两瓶颜料,乙再从余下四瓶中任取两瓶颜料,两人分别进行等量调配,A表示事件“甲调配出红色”;B表示事件“甲调配出绿色”;C表示事件“乙调配出紫色”,则下列说法正确的是(       ).
A.事件A与事件C是独立事件B.事件A与事件B是互斥事件
C.D.
2023-03-13更新 | 1999次组卷 | 5卷引用:湖南师范大学附属中学2022-2023学年高二下学期期中数学试题
6 . 为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和道填空题),不放回地依次随机抽取道题作答,设事件A为“第1次抽到选择题”,事件B为“第次抽到选择题”,则下列结论中正确的是(       
A.B.
C.D.
2021-05-14更新 | 5518次组卷 | 18卷引用:【新教材精创】第七章 随机变量及其分布--复习与小结 -A基础练
7 . 小张等四人去甲、乙、丙三个景点旅游,每人只去一个景点,记事件A为“恰有两人所去景点相同”,事件为“只有小张去甲景点”,则(       
A.这四人不同的旅游方案共有64种B.“每个景点都有人去”的方案共有72种
C.D.“四个人只去了两个景点”的概率是
2023-10-20更新 | 1455次组卷 | 7卷引用:黑龙江省双鸭山市第一中学2023-2024学年高二上学期12月月考数学试题
8 . 某中药材盒中共有包装相同的7袋药材,其中党参有3袋,黄芪有4袋,从中取出两袋,下列说法正确的是(       
A.若有放回抽取,则取出一袋党参一袋黄芪的概率为
B.若有放回抽取,则在至少取出一袋党参的条件下,第2次取出党参的概率为
C.若不放回抽取,则第2次取到党参的概率算法可以是
D.若不放回抽取,则在至少取出一袋党参的条件下,取到一袋党参一袋黄芪的概率为
2024-05-08更新 | 1313次组卷 | 3卷引用:浙江省三锋教研联盟2023-2024学年高二下学期4月期中联考数学试题
9 . 某研究机构为了探究吸烟与肺气肿是否有关,调查了200人.统计过程中发现随机从这200人中抽取一人,此人为肺气肿患者的概率为0.1.在制定列联表时,由于某些因素缺失了部分数据,而获得如图所示的列联表,下列结论正确的是(       
患肺气肿不患肺气肿合计
吸烟15
不吸烟120
合计200
参考公式与临界值表:
0.1000.0500.0250.0100.001
2.7063.8415.0246.63510.828
A.不吸烟患肺气肿的人数为5人B.200人中患肺气肿的人数为10人
C.的观测值D.按99.9%的可靠性要求,可以认为“吸烟与肺气肿有关系”

10 . 如图,某高速服务区停车场中有AH共8个停车位(每个车位只能停一辆车),现有2辆黑色车和2辆白色车要在该停车场停车,则(       

A

B

C

D

E

F

G

H

A.4辆车的停车方法共有1680种
B.4辆车恰好停在同一行的概率是
C.2辆黑色车恰好相邻(停在同一行或同一列)的停车方法共有300种
D.相同颜色的车不停在同一行,也不停在同一列的概率是
2023-07-14更新 | 1294次组卷 | 3卷引用:河北省张家口市2022-2023学年高二下学期期末数学试题
共计 平均难度:一般