组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 27 道试题
1 . (1)为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如表.(单位:个)若规定显著性水平,试分析中草药甲对预防此疾病是否有效;
未患病者患病者合计
未服用
中草药甲
291645
服用
中草药甲
46955
合计7525100
(2)已知一个盒子中装有大小和质地相同的6个红球和3个白球.现从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X,求X的分布列、期望和方差.
附:.
α0.1000.0500.0100.001
x2.7063.8416.63510.828
2024-07-07更新 | 58次组卷 | 1卷引用:上海市长宁区2023-2024学年高二下学期期末考试数学试题
2 . 治疗某种疾病有一种传统药和一种创新药,治疗效果对比试验数据如下:服用创新药的50名患者中有40名治愈;服用传统药的400名患者中有120名未治愈.
(1)补全列联表(单位:人),并根据小概率值的独立性检验,分析创新药的疗效是否比传统的疗效药好;
药物疗效合计
治愈未治愈
创新药


传统药


合计



(2)从服用传统药的400名患者中按疗效比例分层随机抽取10名,在这10人中随机抽取8人进行回访,用表示回访中治愈者的人数,求的分布列及均值.
附:
0.10.050.01
2.7063.8416.635
2024-05-14更新 | 1198次组卷 | 3卷引用:上海市延安中学2023-2024学年高二下学期期末考试数学试卷
3 . 刷脸时代来了,人们为“刷脸支付”给生活带来的便捷感到高兴,但“刷脸支付”的安全性也引起了人们的担忧.某调查机构为了解人们对“刷脸支付”的接受程度,通过安全感问卷进行调查(问卷得分在分之间),并从参与者中随机抽取人.根据调查结果绘制出如图所示的频率分布直方图.

(1)据此估计这人满意度的平均数同一组中的数据用该组区间的中点值作代表
(2)某大型超市引入“刷脸支付”后,在推广“刷脸支付”期间,推出两种付款方案:方案一:不采用“刷脸支付”,无任何优惠,但可参加超市的抽奖返现金活动.活动方案为:从装有个形状、大小完全相同的小球其中红球个,黑球的抽奖盒中,一次性摸出个球,若摸到个红球,返消费金额的;若摸到个红球,返消费金额的,除此之外不返现金.
方案二:采用“刷脸支付”,此时对购物的顾客随机优惠,但不参加超市的抽奖返现金活动,根据统计结果得知,使用“刷脸支付”时有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.现小张在该超市购买了总价为元的商品.
①求小张选择方案一付款时实际付款额的分布列与数学期望;
②试从期望角度,比较小张选择方案一与方案二付款,哪个方案更划算?(注:结果精确到
2024-04-30更新 | 1878次组卷 | 7卷引用:上海市金山中学2023-2024学年高二下学期5月月考数学试卷
4 . 某商店随机抽取了当天100名客户的消费金额,并分组如下:,…,(单位:元),得到如图所示的频率分布直方图.

(1)若该店当天总共有1350名客户进店消费,试估计其中有多少客户的消费额不少于800元;
(2)若利用分层随机抽样的方法从消费不少于800元的客户中共抽取6人,再从这6人中随机抽取2人做进一步调查,则抽到的2人中至少有1人的消费金额不少于1000元的概率是多少;
(3)为吸引顾客消费,该商店考虑两种促销方案.方案一:消费金额每满300元可立减50元,并可叠加使用;方案二:消费金额每满1000元即可抽奖三次,每次中奖的概率均为,且每次抽奖互不影响.中奖1次当天消费金额可打9折,中奖2次当天消费金额可打6折,中奖3次当天消费金额可打3折.若两种方案只能选择其中一种,小王准备购买的商品又恰好标价1000元,请帮助他选择合适的促销方案并说明理由.
2024-04-01更新 | 1054次组卷 | 7卷引用:上海市浦东新区2024届高三下学期期中教学质量检测数学试卷
智能选题,一键自动生成优质试卷~
5 . 为深入学习贯彻党的二十大精神,推动全市党员干部群众用好“学习强国”学习平台,激发干事创业热情.某单位组织“学习强国”知识竞赛,竞赛共有道题目,随机抽取道让参赛者回答.已知小明只能答对其中的道,试求:
(1)抽到他能答对题目数的分布列;
(2)求的期望和方差
2024-03-19更新 | 2681次组卷 | 10卷引用:上海市位育中学2023-2024学年高二下学期3月月考数学试卷
6 . 生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:

跑步软件一

跑步软件二

跑步软件三

跑步软件四

中学生

80

60

40

20

大学生

30

20

20

10

假设大学生和中学生对跑步软件的喜爱互不影响.
(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;
(2)采用分层抽样的方式先从样本中的大学生中随机抽取人,再从这人中随机抽取人.记为这人中最喜爱使用跑步软件二的人数,求的分布列和数学期望;
(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为,其方差为;样本中的大学生最喜爱使用这四款跑步软件的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)
2024-01-19更新 | 1751次组卷 | 7卷引用:上海市普陀区晋元高级中学2024届高三上学期秋考模拟数学试题
7 . 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数.求:
(1)X的分布;
(2)X的期望与方差;
(3)“所选3人中女生人数”的概率.
2023-09-13更新 | 817次组卷 | 5卷引用:复习题(七)
8 . 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数,求:
(1)“所选3人中女生人数”的概率;
(2)X的期望与方差.
2023-07-05更新 | 427次组卷 | 4卷引用:上海市崇明区2022-2023学年高二下学期期末数学试题
9 . 某大学学院共有学生1000人,其中男生640人,女生360人.该学院体育社团为了解学生参与跑步运动的情况,按性别分层抽样,从该学院所有学生中抽取若干人作为样本,对样本中的每位学生在5月份的累计跑步里程进行统计,得到下表.
跑步里程
男生(人数)12105
女生(人数)6642
(1)求的值,并估计学院学生5月份累计跑步里程中的男生人数;
(2)从学院样本中5月份累计跑步里程不少于的学生中随机抽取3人,其中男生人数记为,求的分布及期望.
2023-07-03更新 | 318次组卷 | 6卷引用:上海市洋泾中学2022-2023学年高二下学期期末数学试题
10 . 一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2   18.8   20.2   21.3   22.5   23.2   25.8   26.5   27.5   30.1
32.6   34.3   34.8   35.6   35.6   35.8   36.2   37.3   40.5   43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8     9.2     11.4       12.4   13.2     15.5     16.5   18.0   18.8   19.2
19.8   20.2   21.6   22.8   23.6   23.9   25.1   28.2   32.3   36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:

对照组

实验组

(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:

0.100

0.050

0.010

2.706

3.841

6.635

2023-06-09更新 | 21682次组卷 | 30卷引用:上海市奉贤区奉贤中学2024届高三下学期开学考试数学试题
共计 平均难度:一般