组卷网 > 知识点选题 > 指定区间的概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 72 道试题
1 . 为抓住新一轮科技和产业革命带来的创业机遇,某企业欲购进一批新机床,对现有机床进行更新换代.
(Ⅰ)现有旧机床生产的零件10个,其中直径大于124mm的有3个,若从中随机抽取4个,设表示取出的零件中直径大于124mm的个数,求的分布列及数学期望
(Ⅱ)若新机床生产零件的直径(单位:mm),从新机床生产的零件中随机抽取10个,求其中至少有1个零件的直径大于124mm的概率.
参考数据:若,则
2021-07-10更新 | 31次组卷 | 1卷引用:河南省焦作市普通高中2021-2022学年高二下学期定位考试理科数学试题
2 . 零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术.某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布.某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸,单位:):

100.03

100.4

99.92

100.52

99.98

100.35

99.92

100.44

100.66

100.78

用样本的平均数作为的估计值,用样本的标准差作为的估计值.
(1)按照技术标准的要求,若样本尺寸均在范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格;
(2)该机械加工厂将该切割设备投入生产,对生产的零件制订了两种销售方案(假设每种方案对销售量没有影响):
方案1:每个零件均按70元定价销售;
方案2:若零件的实际尺寸在范围内,则该零件为级零件,每个零件定价100元,否则为级零件,每个零件定价60元.
哪种销售方案的利润更大?请根据数据计算说明.
附:,样本方差.
3 . 一鲜花店销售某种玫瑰花,根据以往的日销售记录,这种玫瑰花的日销售额(单位:元)服从正态分布在销售记录中,随机抽取天,至少有一天日销售额在之外的概率约为0.0257.在这天里,鲜花店老板每天给表现最好的5位员工每位两次抽奖的机会,每次抽奖结果只有“100元和50元”两种结果,由于某种原因,二者出现的概率不一定是等可能的,设出现“100元”的概率为,各次抽奖相互独立.
(1)求的值;
(2)当有10人次参与抽奖时,恰有6人次得到100元的概率为,求的最大值点,当时,设每位员工抽奖得到的金额为,预计在这天里,鲜花店老板需要拿出的抽奖金额的期望是多少?
附:若随机变量服从正态分布,则.
2021-05-17更新 | 368次组卷 | 1卷引用:湘豫名校名校2021届高三联考(5月)数学(理科)试题
4 . “公平正义”是构建社会主义和谐社会的重要特征之一,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自己能否被录取?能获得什么样的职位?
某单位准备通过考试(按照高分优先录取的原则)录用300名职员,其中275个高薪职位和25个普薪职位.实际报名人数为2000名,考试满分为400分(一般地,对于一次成功的考试来说,考试成绩应服从正态分布).考试后考生考试成绩的部分统计结果如下:
考试平均成绩是180分,360分及以上的高分考生有30名.
(1)最低录取分数是多少?(结果保留为整数)
(2)考生甲的成绩为286分,若甲被录取,能否获得高薪职位?若不能被录取,请说明理由.
参考资料:①当时,令,则
②当时,
2021-08-26更新 | 196次组卷 | 4卷引用:河南省洛阳市2019-2020学年高三上学期第一次统一考试(1月)数学(理)试题
5 . 某单位招考工作人员,须参加初试和复试,初试通过后组织考生参加复试,共5000人参加复试,复试共三道题,第一题考生答对得3分,答错得0分,后两题考生每答对一道题得5分,答错得0分,答完三道题后的得分之和为考生的复试成绩.
(1)通过分析可以认为参加复试的考生初试成绩服从正态分布,其中,试估计这5000人中初试成绩不低于90分的人数;
(2)已知某考生已通过初试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试试成绩为,求的分布列及数学期望.
附:若随机变量服从正态分布,则
2020-11-27更新 | 3415次组卷 | 17卷引用:河南省郑州市第十一中学2022-2023学年高三上学期1月份线上考试理科数学试题
6 . 2020年初,新型冠状病毒肆虐,全民开启防疫防控.冠状肺炎的感染主要是人与人之间进行传播,可以通过飞沫以及粪便进行传染,冠状肺炎感染人群年龄大多数是40岁以上的人群.该病毒进入人体后有潜伏期,潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高,现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期中位数为5,平均数为7.1,方差为5.06.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:
长潜伏期非长潜伏期

40岁以上

30

110

40岁及40岁以下

20

40

(1)能否有95%的把握认为“长潜伏期”与年龄有关;
(2)假设潜伏期服从正态分布,其中近似为样本平均数近似为样本方差.现在很多省份对入境旅客一律要求隔离14天,请用概率的知识解释其合理性;
(3)以题目中的样本频率估计概率,设1000个病例中恰有个属于“长潜伏期”的概率是,当为何值时,取得最大值?
附:.
0.10.050.010
2.7063.8416.635
若随机变量服从正态分布,则.
2020-09-16更新 | 601次组卷 | 2卷引用:河南省南阳市2019-2020学年高二下学期期末考试数学(理)试题
7 . 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图的频率分布直方图:

(1)求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.
(i)利用该正态分布,求
(ii)某用户从该企业购买了200件这种产品,记X表示这200件产品中质量指标值位于区间的产品件数,利用(i)的结果,求.
附:.若,则.
2020-08-17更新 | 313次组卷 | 1卷引用:河南省开封市五县联考2019-2020学年高二下学期期末考试数学(理)试题
8 . 当前,全球贸易格局发生重大变化,随着中美贸易战的不断升级,让越来越多的中国科技企业开始意识到自主创新的重要性,大大加强科技研发投入的力度,形成掌控高新尖端核心技术及其市场的能力.某企业为确定下一年对某产品进行科技升级的研发费用,需了解该产品年研发费用(单位:千万元)对年销售量(单位:千万件)和年利润(单位:千万元)的影响.根据市场调研与模拟,对收集的数据进行初步处理,得到散点图及一些统计量的值如下:

30.5

15

15

46.5


表中.
(1)根据散点图判断,哪一个更适合作为年销售量关于年研发费用的回归方程类型(给出判断即可,不必说明理由),并根据判断结果及表中数据,建立关于的回归方程;
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
(2)已知年利润的关系为(其中为自然对数的底数),要使企业下一年的年利润最大,预计下一年应投入多少研发费用?
(3)科技升级后,该产品的效率大幅提高,经试验统计得大致服从正态分布.企业对科技升级团队的奖励方案如下:若不超过,不予奖励;若超过,但不超过,每件产品奖励2元;若超过,每件产品奖励4元.记为每件产品获得的奖励,求(精确到0.01).
附:若随机变量,则.
9 . 在市高二下学期期中考试中,理科学生的数学成绩,已知,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为(  )
A.0.15B.0.50C.0.70D.0.85
10 . 为进一步深化“平安校园”创建活动,加强校园安全教育宣传,某高中对该校学生进行了安全教育知识测试(满分100分),并从中随机抽取了200名学生的成绩,经过数据分析得到如图1所示的频数分布表,并绘制了得分在以及的茎叶图,分别如图2、3所示.

成绩

频数

5

30

40

50

45

20

10

图1



(1)求这200名同学得分的平均数;(同组数据用区间中点值作代表)
(2)如果变量满足,则称变量“近似满足正态分布的概率分布”.经计算知样本方差为210,现在取分别为样本平均数和方差,以样本估计总体,将频率视为概率,如果该校学生的得分“近似满足正态分布的概率分布”,则认为该校的校园安全教育是成功的,否则视为不成功.试判断该校的安全教育是否成功,并说明理由.
(3)学校决定对90分及以上的同学进行奖励,为了体现趣味性,采用抽奖的方式进行,其中得分不低于94的同学有两次抽奖机会,低于94的同学只有一次抽奖机会,每次抽奖的奖金及对应的概率分别为:

奖金

50

100

概率

现在从不低于90同学中随机选一名同学,记其获奖金额为,以样本估计总体,将频率视为概率,求的分布列和数学期望.
(参考数据:
共计 平均难度:一般