组卷网 > 知识点选题 > 通过牛顿第二定律求解向心力
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 65 道试题
20-21高一下·浙江·阶段练习
1 . 竖直光滑轨道固定在距地面高为H=0.8m的桌子边缘,轨道末端可视作半径为r=0.3m的圆形轨道,其末端切线水平,桌子边缘距离竖直墙壁x=0.6m。质量为m=0.1kg的小球(视为质点)从轨道某处滚下,与竖直墙壁的撞击点距地面高度为0.6m。若撞击后水平方向速度大小不变,方向反向,竖直方向速度不变,且小球的运动始终在同一平面内并不与桌子发生碰撞,小球重力加速度取g=10m/s2,求:
(1)求小球经过轨道末端时速度的大小;
(2)小球经过轨道末端时对轨道的压力;
(3)小球落地点离墙面的距离。
2021-05-07更新 | 374次组卷 | 1卷引用:【新东方】 高中物理20210429—018【2020】【高一下】
2 . 抛石机是古代远程攻击的一种重型武器,某同学制作了一个简易模型,如图所示。支架固定在地面上,O为转轴,长为L的轻质硬杆A端的凹槽内放置一质量为m的石块,B端固定质量为20m的重物,AO0.9LOB0.1L。为增大射程,在重物B上施加一向下的瞬时作用力后,硬杆绕O点在竖直平面内转动。硬杆转动到竖直位置时,石块立即被水平抛出,此时重物B的速度为,石块直接击中前方倾角为15的斜坡,且击中斜坡时的速度方向与斜坡成60角,重力加速度为g,忽略空气阻力影响,求:
(1)石块击中斜坡时的速度大小;
(2)石块抛出后在空中运动的水平距离;
(3)石块抛出前的瞬间,硬杆对转轴O的作用力。
3 . 如图所示,细绳一端系着质量M=0.5kg的物体,另一端通过圆盘中心的光滑小孔吊着质量m=0.3kg的物体,物体M与小孔距离为0.4m(物体M可看成质点),已知M和水平圆盘间的最大静摩擦力为2N,重力加速度g取10 m/s2
(1)若圆盘静止不动,从静止释放M,求M的加速度大小;
(2)若使圆盘绕中心轴线转动,m处于静止状态,求角速度ω的最大值。
   
4 . 某人站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球运动起来,最终在水平面内做匀速圆周运动。已知轻绳能承受的最大拉力为,握绳的手离地面高度为,手与球之间的绳长为l,重力加速度为g,忽略空气阻力。
(1)当球的速度大小为时,轻绳刚好断掉,求此时绳与竖直方向的夹角与球的速度大小
(2)保持手的高度不变,改变绳长,使球重复上述运动,要使绳刚好被拉断后球的落地点与抛出位置的竖直投影点O水平距离最大,绳长应为多少?最大水平距离为多少?
5 . 如图甲所示,长为L=3m的传送带以速v0=6m/s顺时针匀速转动,其左端A点与一个四分之一光滑圆轨道连接,轨道半径R=0.8m;右端B与一个倾角为30°的斜面连接,B点到地面的高度为H=1.8m。小滑块从光滑圆轨道高h处静止释放,到达A点时的速率v与下落高度h的关系如图乙所示。已知小滑块质量为m=2kg,与传送带之间的动摩擦因数为,重力加速度g取10m/s2,求:
(1)若滑块从h=0.5m处静止释放,则物块到达A点时对轨道的压力;
(2)若物块从B点水平飞出后恰好到达斜面底端C点,则滑块从B点飞出的速度多大?
(3)滑块从不同高度h静止释放时,滑块在空中做平抛运动的时间。

2021高三·全国·专题练习
多选题 | 较难(0.4) |
名校
6 . 如图所示,在竖直平面内固定一个四分之一圆弧轨道AP,圆弧轨道的圆心为OOA水平,OP竖直,半径R=0.2 m。一质量m=1 kg的小物块从圆弧顶点A开始以 m/s的速度从AP做匀速圆周运动,重力加速度g=10 m/s2Q为圆弧AP的一个三等分点(图中未画出),OAOQ的夹角为30°,则下列说法正确的是(  )
A.从AP的过程中小物块与轨道间的动摩擦因数一直减小
B.在Q点时,小物块对圆弧轨道的压力大小为10 N
C.在Q点时,小物块受到圆弧轨道的摩擦力大小为5 N
D.在P点时,小物块对圆弧轨道的压力大小为25 N
2021-02-16更新 | 1132次组卷 | 5卷引用:湖南省邵阳市隆回县第一中学2020-2021学年高一下学期4月物理试题
7 . 如图所示,一水平平台AB,平台左侧有半径的圆弧形轨道与平台相切,且A恰好为圆轨道最低点。质量为的滑块,从圆轨道上某处以一定的初速度滑下,经过圆轨道的最低点A时的速度为,已知滑块能看成质点,滑块和平台之间的动摩擦因数,平台AB,取,求:
(1)滑块通过圆弧上A点时对轨道的压力;
(2)滑块到达平台末端B点时的速度大小;
(3)滑块离开平台落至水平面时的落点与B点的水平距离。
8 . 如图所示,装置KOO′可绕竖直轴OO转动,杆KO水平,可视为质点的小环A与小球B通过细线连接,细线与竖直方向的夹角=37°,小环A套在杆KO上,小球B通过水平细线固定在转轴上的P点,已知小环A的质量mA=0.6kg,小球B的质量mB=0.4kg,细线ABL=0.5m,细线BPl=0.2m。(重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8)。求:
(1)若装置静止,求杆KO对小环A的弹力N、摩擦力f的大小和方向;
(2)若装置匀速转动的角速度为1,小环A受到杆对它的f大小变为零,细线AB与竖直方向夹角仍为37°,求角速度1的大小和细线BP中张力T的大小;
(3)小环A与杆KO间的动摩擦因数为0.6,且可认为最大静摩擦力等于滑动摩擦力。当装置以不同的角速度匀速转动时,小环A受到的摩擦力大小为f。试通过计算在坐标系中作出小环A与杆发生相对滑动前的f-2关系图像。

9 . 如图,半径为R的半球形容器固定在水平转台上,转台绕过容器球心O的竖直轴线以角速度ω匀速转动.质量相等的小物块A、B随容器转动且相对器壁静止.A、B和球心O点连线与竖直方向的夹角分别为αβαβ,则下列说法正确的是(  )
A.A的向心力等于B的向心力
B.A、B受到的摩擦力可能同时为0
C.若ω缓慢增大,则A、B受到的摩擦力一定都增大
D.若A不受摩擦力,则B受沿容器壁向下的摩擦力
10 . 如图所示,装置BOO可绕竖直轴OO转动,可视为质点的小球A与两细线连接后分别系于BC两点,装置静止时细线AB水平,细线AC与竖直方向的夹角为37°。已知小球的质量m=1 kg,细线ACl=1 m,B点距C点的水平和竖直距离相等:(重力加速度g取10 m/s2
(1)若装置匀速转动的角速度为ω1,细线AB上的张力为零而细线AC与竖直方向的夹角仍为37°,求角速度ω1的大小;
(2)若装置匀速转动的角速度ω2rad/s,求细线AC的弹力;
(3)装置可以以不同的角速度匀速转动,试通过计算,写出细线AC上张力FT随角速度的平方ω2变化的关系式。

共计 平均难度:一般