组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 153 道试题
1 . 在等差数列中,填写下表:

题号

(1)

8

(2)

2

9

18

(3)

30

(4)

3

2

21

思考填表过程,你能得出什么结论?
2 . 作为上海市副中心之一,徐汇区的建设不仅是上海市发展战略的关键节点,也肩负着医治上海市“大城市病”的历史重任,因此,徐汇区的发展备受瞩目.2017年发布的《上海市徐汇区统计年鉴(2017)》显示:2016年徐汇区全区完成全社会固定资产投资939.9亿元,比上年增长,下面给出的是徐汇区2011~2016年全社会固定资产投资及增长率,如图一.又根据徐汇区统计局2018年1月25日发布:2017年徐汇区全区完成全社会固定资产投资1054.5亿元,比上年增长

(1)在图二中画出2017年徐汇区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图;
(2)通过计算2011~2017这7年的平均增长率约为,现从2011~2017这7年中随机选取2个年份,记X为“选取的2个年份中,增长率高于的年份的个数”,求X的分布列及数学期望.
2024-05-25更新 | 55次组卷 | 1卷引用:甘肃省武威市凉州区2023-2024学年高二下学期期中质量检测数学试卷
3 . 浙江省是第一批新高考改革省份,取消文理分科,变成必考科目和选考科目.其中必考科目是语文、数学、外语,选考科目由考生在思想政治、历史、地理、物理、化学、生物、技术7个科目中自主选择其中3个科目参加等级性考试.为了调查学生对物理、化学、生物的选考情况,从镇海中学高三在物理、化学、生物三个科目中至少选考一科的学生中随机抽取100名学生进行调查,他们选考物理、化学、生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

20

40

40

(1)从这100名学生中任选2名,求他们选考物理、化学、生物科目数相等的概率;
(2)从这100名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数之差的绝对值,求随机变量X的数学期望;
(3)学校还调查了这100位学生的性别情况,研究男女生中纯理科生大概的比例,得到的数据如下表:(定文同时选考物理、化学、生物三科的学生为纯理科生)

性别

纯理科生

非纯理科生

总计

男性

30

女性

5

总计

100

请补齐表格,并说明依据小概率值的独立性检验,能否认为同时选考物理、化学、生物三科与学生性别有关.
参考公式:,其中
附表:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

2023-05-31更新 | 795次组卷 | 3卷引用:浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题
22-23高二上·上海浦东新·期中
单选题 | 容易(0.94) |
名校
4 . 下列各图符合立体几何作图规范要求的是(  )

A.直线在平面内 B.平面与平面相交 C.直线与平面相交 D.两直线异面
2022-11-25更新 | 728次组卷 | 9卷引用:专题01平面及其基本性质(9个知识点6种考法)(3)
5 . 图中的树形图形为:第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段成135°角的线段,长度为其一半;第三层按第二层的方法在每一线段的前端生成两条线段.重复前面的作法作图至第n层.设树的第n层的最高点至水平线的距离为n层的树形的高度.试求:
   
(1)第三层及第四层的树形图的高度
(2)第n层的树形图的高度
(3)若树形图的高度大于2,则称树形图为“高大”否则则称“矮小”.试判断该树形图是“高大”还是“矮小”的?
2024-01-07更新 | 316次组卷 | 3卷引用:专题06 信息迁移型【讲】(一)【通用版】
6 . 如图,正方形的边长为2cm,取正方形各边的中点EFGH,作第二个正方形,然后再取正方形各边的中点IJKL,作第三个正方形,依此方法一直继续下去,如果这个作图过程可以一直继续下去,当操作次数无限增大时,所有这些正方形的面积之和将无限趋近于常数_______________

2024-01-23更新 | 178次组卷 | 2卷引用:江苏省南京市江宁区2023-2024学年高二上学期期末统考数学试卷
22-23高二上·上海宝山·期中
7 . 已知正三棱柱的底面边长为3cm,高为3cm,MNP分别是的中点.
(1)用“斜二测”画法,作出此正三棱柱的直观图(严格按照直尺刻度);
(2)在(1)中作出过MNP三点的正三棱柱的截面(保留作图痕迹).
2022-11-17更新 | 744次组卷 | 10卷引用:专题01平面及其基本性质(9个知识点6种考法)(3)
8 . 乒乓球,被称为中国的“国球”.某中学对学生参加乒乓球运动的情况进行调查,将每周参加乒乓球运动超过2小时的学生称为“乒乓球爱好者”,否则称为“非乒乓球爱好者”,从调查结果中随机抽取100份进行分析,得到数据如表所示:

乒乓球爱好者

非乒乓球爱好者

总计

40

56

24

总计

100

(1)补全列联表,并判断我们能否有的把握认为是否为“乒乓球爱好者”与性别有关?
(2)为了解学生的乒乓球运动水平,现从抽取的“乒乓球爱好者”学生中按性别采用分层抽样的方法抽取3人,与体育老师进行乒乓球比赛,其中男乒乓球爱好者获胜的概率为,女乒乓球爱好者获胜的概率为,每次比赛结果相互独立,记这3人获胜的人数为,求的分布列和数学期望.

0.05

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:
2024-04-10更新 | 932次组卷 | 5卷引用:8.3.1分类变量与列联表+8.3.2独立性检验 第三练 能力提升拔高
9 . 杭州第19届亚运会又称“2022年杭州亚运会”,是继1990年北京亚运会、2010年广州亚运会之后,中国第三次举办亚洲最高规格的国际综合性体育赛事.某高校部分学生十分关注杭州亚运会,若将累计关注杭州亚运会赛事消息50次及以上的学生称为“亚运会达人”,未达到50次的学生称为“非亚运会达人”.现从该校随机抽取100名学生,得到数据如表所示:
亚运会达人非亚运会达人合计
男生4056
女生24
合计
(1)补全列联表,并判断能否有99%的把握认为是否为“亚运会达人”与性别有关?
(2)现从样本的“亚运会达人”中按性别采用分层抽样的方法抽取6人,然后从这6人中随机抽取3人,记这3人中女生的人数为X,求X的分布列和数学期望.
附:
0.0500.0100.005
k3.8416.6357.879
2024-01-08更新 | 247次组卷 | 2卷引用:专题05 成对数据的统计分析压轴题(2)
10 . 乒乓球,被称为中国的“国球”,是一项集力量、速度、柔韧、灵敏和耐力素质为一体的球类运动,同时又是技术和战术完美结合的典型.打乒乓球能使眼球内部不断运动,血液循环增强,眼神经机能提高,因而能使眼睛疲劳消除或减轻,起到预防治疗近视的作用.乒乓球的球体小,速度快,攻防转换迅速,技术打法丰富多样,既要考虑技术的发挥,又要考虑战术的运用.乒乓球运动中要求大脑快速紧张地思考,这样可以促进大脑的血液循环,供给大脑充分的能量,具有很好的健脑功能.乒乓球运动中既要有一定的爆发力,又要有动作的高度精确,要做到眼到、手到和步伐到,提高了身体的协调和平衡能力.不管学习还是工作,每天都或多或少有点压抑,打球能使大脑的兴奋与抑制过程合理交替,避免神经系统过度紧张.某中学对学生参加乒乓球运动的情况进行调查,将每周参加乒乓球运动超过2小时的学生称为“乒乓球爱好者”,否则称为“非乒乓球爱好者”,从调查结果中随机抽取100份进行分析,得到数据如表所示:


乒乓球爱好者

非乒乓球爱好者

总计

40


56


24


总计



100


(1)补全列联表,并判断我们能否有的把握认为是否为“乒乓球爱好者”与性别有关?
(2)为了解学生的乒乓球运动水平,现从抽取的“乒乓球爱好者”学生中按性别采用分层抽样的方法抽取3人,与体育老师进行乒乓球比赛,其中男乒乓球爱好者获胜的概率为,女乒乓球爱好者获胜的概率为,每次比赛结果相互独立,记这3人获胜的人数为X,求X的分布列和数学期望.
参考公式:.

0.05

0.010

0.005

0.001

k

3.841

6.635

7.879

10.828

2024-03-20更新 | 550次组卷 | 7卷引用:辽宁省本溪市第一中学2023-2024学年高二下学期寒假验收考试数学试题
共计 平均难度:一般