名校
1 . 英国物理学家牛顿用“作切线”的方法求函数零点时,给出了“牛顿数列”,它在航空航天中应用非常广泛.其定义是:对于函数,若满足,则称数列为牛顿数列.已知,在横坐标为的点处作的切线,切线与轴交点的横坐标为,继续牛顿法的操作得到数列.设,数列的前项积为.若对任意的恒成立,则整数的最小值为_____________ .
您最近一年使用:0次
名校
解题方法
2 . 欧拉恒等式(为虚数单位,为自然对数的底数)被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,,得.根据欧拉公式,复数在复平面上所对应的点在( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
您最近一年使用:0次
2024-07-20更新
|
126次组卷
|
3卷引用:福建省福州市闽侯县闽江口协作校(七校)2023-2024学年高一下学期7月期末联考数学试题
3 . 在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图所示.那么,在“杨辉三角”中,第_____________ 行会出现三个相邻的数,其比为2:3:4.
您最近一年使用:0次
解题方法
4 . 我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”有一个题目:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”这就是秦九韶推出的“三斜求积”公式.若的内角的对应边分别为,面积为,则“三斜求积”公式为
(1)用“三斜求积”公式证明;
(2)若,且,求面积的最大值;
(3)定义:四面体中,若异面棱长相等的四面体为等腰四面体.设等腰四面体的外接球表面积为的外接圆面积为.已知,且,,试用表示,并求的取值范围.
(1)用“三斜求积”公式证明;
(2)若,且,求面积的最大值;
(3)定义:四面体中,若异面棱长相等的四面体为等腰四面体.设等腰四面体的外接球表面积为的外接圆面积为.已知,且,,试用表示,并求的取值范围.
您最近一年使用:0次
5 . 威镇阁坐落于漳州市区战备大桥引桥左侧,是漳州市的标志性建筑之一.某同学为测量威镇阁的高度,在威镇阁的正北方向找到一座建筑物,高约为,在地面上点处(三点共线)测得建筑物顶部,威镇阁顶部的仰角分别为和,在处测得威镇阁顶部的仰角为,威镇阁的高度约为( )
A. | B. | C. | D. |
您最近一年使用:0次
6 . 《九章算术》中将正四棱台(上、下底面均为正方形)称为“方亭”.现有一方亭,上底面边长为2,下底面边长为4,侧棱与下底面所成的角为,则此方亭的体积为( )
A. | B. |
C. | D. |
您最近一年使用:0次
2024-07-07更新
|
315次组卷
|
3卷引用:福建省福州市九县(市、区)一中2023-2024学年高一下学期7月期末联考数学试题
福建省福州市九县(市、区)一中2023-2024学年高一下学期7月期末联考数学试题(已下线)专题5 角的大小 作角转化(经典好题母题)【练】山西省山西大学附属中学校2024-2025学年高二上学期9月模块诊断考试数学试题
7 . 国家二级文化保护遗址玉皇阁的台基可近似看作上、下底面边长分别为,,侧棱长为的正四棱台,则该台基的体积约为( )
A. | B. | C. | D. |
您最近一年使用:0次
2024-06-04更新
|
1033次组卷
|
6卷引用:福建省部分学校教学联盟2023~2024学年高一下学期期末质量检测数学试题
8 . 我国汉代数学家赵爽为了证明勾股定理,创造了一幅“勾股圆方图”,后人称其为“赵爽弦图”.类比赵爽弦图,用3个全等的小三角形拼成了如图所示的等边,若,,则__________ .
您最近一年使用:0次
2024-05-27更新
|
559次组卷
|
3卷引用:福建省泉州市2023-2024学年高一下学期期末质量检测数学模拟训练试题(3)
解题方法
9 . 《算学启蒙》作者是元代著名数学家朱世杰,这是一部在中国乃至世界最早的科学普及著作.里面涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.某同学模仿“堆垛”问题,将108根相同的铅笔刚好全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从上往下,每一层比下一层少1根,则该“等腰梯形垛”最多可以堆放__________ 层.
您最近一年使用:0次
名校
解题方法
10 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程为,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正、余弦函数导数之间的关系,,,请写出,具有的类似的性质(不需要证明);
(2)当时,恒成立,求实数的取值范围;
(3)求的最小值.
(1)类比正、余弦函数导数之间的关系,,,请写出,具有的类似的性质(不需要证明);
(2)当时,恒成立,求实数的取值范围;
(3)求的最小值.
您最近一年使用:0次
2024-03-10更新
|
1351次组卷
|
22卷引用:福建省龙岩市上杭县第一中学2023-2024学年高二下学期数学期末复习卷试题(八)
福建省龙岩市上杭县第一中学2023-2024学年高二下学期数学期末复习卷试题(八)福建省龙岩市连城县第一中学2023-2024学年高二下学期5月月考(2)数学试题河南省三门峡市2023-2024学年高二下学期5月期末调研考试数学试题辽宁省锦州市2023-2024学年高二下学期期末考试数学试卷福建省泉州市泉州科技中学2023-2024学年高二下学期第一次月考数学试题广西示范性高中2023-2024学年高二下学期3月调研测试数学试卷(已下线)模块一 专题3 导数在研究函数极值和最值中的应用(B)(已下线)综合检测卷(数列+导数)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第二册)湖北省荆州市沙市中学2023-2024学年高二下学期3月月考数学试题广东省揭阳市惠来县第一中学2023-2024学年高二下学期3月月考数学试题(已下线)模块四 专题1 高考新题型专练(新定义专练)(人教A)(高二)(已下线)高二下学期第一次月考模拟卷(新题型)(导数+计数原理)-2023-2024学年高二数学题型分类归纳讲与练(人教A版2019)河北省正定中学2023-2024学年高二下学期第一次月考数学试题河北省邯郸市大名县第一中学2023-2024学年高二下学期3月月考数学试卷山东省临沂市第二十四中学2023-2024学年高二下学期3月月考数学试题吉林省长春外国语学校2023-2024学年高二下学期4月月考数学试卷(已下线)模块一 专题3 《导数在研究函数极值和最值中的应用》B提升卷(苏教版)(已下线)模块三 专题3 高考新题型专练 专题2 新定义专练(苏教版)广东省深圳市高级中学(集团)2023-2024学年高二下学期期中考试数学试卷(已下线)上海市四校(复兴高级中学、松江二中、奉贤中学、金山中学)2024届高三下学期3月联考数学试题变式题17-21四川省广元市川师大万达中学2023-2024学年高二下学期6月月考数学试题江苏省南京田家炳高级中学2023-2024学年高二下学期3月模拟考试数学试卷