名校
解题方法
1 . 若函数与满足:对任意的,总存在唯一的,使成立,则称是在区间上的“阶伴随函数”;当时,则称为区间上的“m阶自伴函数”.
(1)判断是否为区间上的“2阶自伴函数”?并说明理由;
(2)若函数为区间上的“1阶自伴函数”,求的值;
(3)若是在区间上的“2阶伴随函数”,求实数的取值范围.
(1)判断是否为区间上的“2阶自伴函数”?并说明理由;
(2)若函数为区间上的“1阶自伴函数”,求的值;
(3)若是在区间上的“2阶伴随函数”,求实数的取值范围.
您最近一年使用:0次
名校
解题方法
2 . 已知函数,记.
(1)求不等式的解集:;
(2)设为实数,若存在实数,使得成立,求的取值范围;
(3)记(其中均为实数),若对于任意的,均有,求的值.
(1)求不等式的解集:;
(2)设为实数,若存在实数,使得成立,求的取值范围;
(3)记(其中均为实数),若对于任意的,均有,求的值.
您最近一年使用:0次
名校
解题方法
3 . 设是一个定义域为的函数.若是的一个非空子集,且对于任意的,都有,则称是关联的.
(1)判断函数和函数是否是关联的,无需说明理由.(表示不超过的最大整数)
(2)若函数是关联的,且在上,,解不等式.
(3)已知正实数满足,且函数是关联的,求的解析式.
(1)判断函数和函数是否是关联的,无需说明理由.(表示不超过的最大整数)
(2)若函数是关联的,且在上,,解不等式.
(3)已知正实数满足,且函数是关联的,求的解析式.
您最近一年使用:0次
名校
4 . 已知函数为奇函数, ,其中 .
(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;
(2)若m=3,试判断函数在上的单调性并证明;
(3)设函数,若对每一个不小于3的实数 ,都恰有一个小于3的实数 ,使得 成立,求实数m的取值范围.
(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;
(2)若m=3,试判断函数在上的单调性并证明;
(3)设函数,若对每一个不小于3的实数 ,都恰有一个小于3的实数 ,使得 成立,求实数m的取值范围.
您最近一年使用:0次
2022-03-27更新
|
949次组卷
|
10卷引用:上海市复旦大学附属中学2018-2019学年高三上学期期中数学试题
上海市复旦大学附属中学2018-2019学年高三上学期期中数学试题上海市复旦大学附属中学2019-2020学年高三上学期开学摸底数学试题湖南省长沙市明德中学2019-2020学年高一上学期期末数学试题上海市行知中学2020-2021学年高一上学期12月月考数学试题(已下线)4.2 指数函数-2021-2022学年高一数学尖子生同步培优题典(人教A版2019必修第一册)江苏省常州市第一中学2020-2021学年高一上学期期末数学试题(已下线)第8章 函数应用(培优卷)-【满分计划】2022-2023学年高一数学阶段性复习测试卷(苏教版2019必修第一册)(已下线)期末测试卷02(培优卷)-【满分计划】2022-2023学年高一数学阶段性复习测试卷(苏教版2019必修第一册)(已下线)专题07 函数恒成立等综合大题归类江苏省西安交通大学苏州附属中学2022-2023学年高一下学期开学考试数学试卷
5 . (1)是以为定义域的减函数,且对于任意,恒有,写出一个满足条件的函数的解析式;
(2)是以为定义域的奇函数,且对于任意,恒有,写出一个满足条件的函数的解析式;
(3)都是以为定义域的函数,写出一组满足下列条件的函数的解析式,对于下列三组条件,只需选做一组,满分分别是①,②,③;若选择了多于一种的情形,则按照序号较小的解答计分.
①对于任意,恒有;
②对于任意,恒有;
③对于任意,恒有.
(2)是以为定义域的奇函数,且对于任意,恒有,写出一个满足条件的函数的解析式;
(3)都是以为定义域的函数,写出一组满足下列条件的函数的解析式,对于下列三组条件,只需选做一组,满分分别是①,②,③;若选择了多于一种的情形,则按照序号较小的解答计分.
①对于任意,恒有;
②对于任意,恒有;
③对于任意,恒有.
您最近一年使用:0次
6 . 已知,其中是实常数.
(1)若,求的取值范围;
(2)若,求证:函数的零点有且仅有一个;
(3)若,设函数的反函数为,若是公差的等差数列且均在函数的值域中,求证:.
(1)若,求的取值范围;
(2)若,求证:函数的零点有且仅有一个;
(3)若,设函数的反函数为,若是公差的等差数列且均在函数的值域中,求证:.
您最近一年使用:0次