名校
解题方法
1 . 如图,在棱长为的正四面体中,点,分别为和的重心,为线段上一点.则下列结论正确的是( )
A.若平面,则 |
B.若平面,则三棱锥的体积为 |
C.若为线段的中点,且平面,则 |
D.的最小值为2 |
您最近一年使用:0次
名校
解题方法
2 . 在棱长为2的正方体中,动点在正方形内运动(含边界),则( )
A.有且仅有一个点,使得 |
B.有且仅有一个点,使得平面 |
C.当时,三棱锥的体积为定值 |
D.有且仅有两个点,使得 |
您最近一年使用:0次
2024·全国·模拟预测
解题方法
3 . 在三棱锥中,底面是等边三角形,侧面是等腰直角三角形,,是平面内一点,且,若,则点的轨迹长度为( )
A. | B. | C. | D. |
您最近一年使用:0次
名校
解题方法
4 . 已知正六棱锥的侧棱长为,底面边长为2,点为正六棱锥外接球上一点,则三棱锥体积的最大值为( )
A. | B. | C. | D. |
您最近一年使用:0次
2023-09-01更新
|
714次组卷
|
5卷引用:福建省龙岩市一级校联盟2022-2023学年高一下学期期中联考数学试题
福建省龙岩市一级校联盟2022-2023学年高一下学期期中联考数学试题(已下线)模块一专题6《简单几何体的表面积和体积》单元检测篇B提升卷(已下线)第13讲 8.6.2直线与平面垂直的性质定理 (第2课时)-【帮课堂】(人教A版2019必修第二册)江西省吉安市第三中学2023-2024学年高二上学期开学考试(艺术类)数学试题(已下线)第11章 简单几何体(压轴题专练)-2023-2024学年高二数学单元速记·巧练(沪教版2020必修第三册)
解题方法
5 . 如图所示,已知四棱锥中,,,,,,
(1)图(1)若点为的中点,求证:平面
(2)图(1)求证:顶点在底面的射影为边的中点.
(3)图(2)点在上,且,求三棱锥的体积.
(1)图(1)若点为的中点,求证:平面
(2)图(1)求证:顶点在底面的射影为边的中点.
(3)图(2)点在上,且,求三棱锥的体积.
您最近一年使用:0次
名校
6 . 在棱长为的正方体中,为正方形的中心,为棱上的动点,则下列说法正确的是( )
A.点为中点时, |
B.点与点重合时,三棱锥外接球体积为 |
C.当点运动时,三棱锥外接球的球心总在直线上 |
D.当为的中点时,正方体表面到点距离为的轨迹的总长度为 |
您最近一年使用:0次
2022-01-08更新
|
2671次组卷
|
10卷引用:福建省泉州第五中学2021-2022学年高一下学期期中考试数学试题
福建省泉州第五中学2021-2022学年高一下学期期中考试数学试题福建省南平市浦城县2022-2023学年高一下学期期中考试数学试题湖南省名校联考联合体2021-2022学年高二上学期12月联考数学试题(已下线)数学-2022届高三下学期开学摸底考试卷(山东专用)辽宁省鞍山市第一中学2021-2022学年高三下学期4月线上模拟考试数学试卷山东省五莲县、诸城市、安丘市、兰山区四县区2022届高三过程性测试数学试题湖南省株洲市第二中学2021-2022学年高二下学期第二次月考数学试题湖南省株洲市南方中学2022-2023学年高三上学期9月月考数学试题(已下线)考点14 立体几何中的动态问题 2024届高考数学考点总动员【讲】重庆外国语学校(川外附中)2024届高三上学期1月月考数学试题
名校
解题方法
7 . 如图,在边长为2的正方形中,点是边的中点,将沿翻折到,连结, ,在翻折到的过程中,下列说法正确的是_________ .(将正确说法的序号都写上)①四棱锥的体积的最大值为;
②当面平面时,二面角的正切值为;
③存在某一翻折位置,使得;
④棱的中点为,则的长为定值.
②当面平面时,二面角的正切值为;
③存在某一翻折位置,使得;
④棱的中点为,则的长为定值.
您最近一年使用:0次
2021-12-10更新
|
1107次组卷
|
3卷引用:福建省浦城第一中学2023-2024学年高一下学期4月期中考试数学试题
福建省浦城第一中学2023-2024学年高一下学期4月期中考试数学试题黑龙江省哈尔滨师范大学附属中学2021-2022学年高三上学期期中考试数学(理)试题(已下线)第八章 立体几何初步(提分小卷)-【单元测试】2021-2022学年高一数学尖子生选拔卷(人教A版2019必修第二册)