组卷网 > 知识点选题 > 椭圆的应用
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 41 道试题
1 . 我国在2022年完成了天宫空间站的建设,根据开普勒第一定律,天宫空间站的运行轨道可以近似为椭圆,地球处于该椭圆的一个焦点上.已知某次变轨任务前后,天宫空间站的近地距离(天宫空间站与地球距离的最小值)不变,远地距离(天宫空间站与地球距离的最大值)扩大为变轨前的3倍,椭圆轨道的离心率扩大为变轨前的2倍,则此次变轨任务前的椭圆轨道的离心率为(       
A.B.C.D.
2024-01-06更新 | 551次组卷 | 5卷引用:2023年普通高等学校招生“圆梦杯”统一模拟考试(三)数学试题
2 . 如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心为圆心的圆形轨道I上绕月球飞行,然后在点处变轨进入以为一个焦点的椭圆轨道II绕月球飞行,最后在点处变轨进入以为圆心的圆形轨道III绕月球飞行,设圆形轨道I的半径为,圆形轨道III的半径为,则下列结论中正确的序号为(       
   
①轨道II的焦距为
②若不变,越大,轨道II的短轴长越小;
③轨道II的长轴长为
④若不变,越大,轨道II的离心率越大.
A.①②③B.①②④C.①③④D.②③④
2023-12-28更新 | 271次组卷 | 4卷引用:内蒙古锡林郭勒盟2024届高三上学期第二次统一考试(12月月考)(全国乙卷)理科数学试题
23-24高二上·湖北武汉·期中
3 . 法国著名数学家加斯帕尔·蒙日在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点的轨迹是以坐标原点为圆心,为半径的圆,这个圆称为蒙日圆.已知椭圆,则下列说法正确的是(       
A.椭圆的蒙日圆方程为
B.矩形的四边均与椭圆相切,若为正方形,则的边长为
C.若是椭圆的蒙日圆上一个动点,过作椭圆的两条切线,与该蒙日圆分别交于两点,则面积的最大值为
D.若是直线上的一点,过点作椭圆的两条切线与椭圆相切于两点,是坐标原点,连接,当为直角时,
2023-12-14更新 | 149次组卷 | 3卷引用:2024年全国高考名校名师联席命制型数学信息卷(四)
4 . 古希腊数学家阿波罗尼奥斯所著的八册《圆锥曲线论(Conics)》中,首次提出了圆锥曲线的光学性质,其中之一的内容为:“若点为椭圆上的一点,为椭圆的两个焦点,则点处的切线平分外角”.根据此信息回答下列问题:已知椭圆为坐标原点,是点处的切线,过左焦点的垂线,垂足为,则为(       
A.B.C.D.
2023-11-15更新 | 619次组卷 | 3卷引用:福建省厦门第一中学2024届高三上学期期中考试数学试题
智能选题,一键自动生成优质试卷~
22-23高二下·河北邯郸·期末
名校
5 . 开普勒第一定律也称椭圆定律轨道定律,其内容如下:每一行星沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点上.将某行星看作一个质点,绕太阳的运动轨迹近似成曲线,行星在运动过程中距离太阳最近的距离称为近日点距离,距离太阳最远的距离称为远日点距离.若行星的近日点距离和远日点距离之和是18(距离单位:亿千米),近日点距离和远日点距离之积是16,则       
A.39B.52C.86D.97
2023-07-05更新 | 891次组卷 | 11卷引用:模块四 专题8 高考新题型(复杂情景题专训)基础夯实练(人教A)
6 . 我国南北朝时期的伟大科学家祖暅于5世纪末提出了下面的体积计算原理:“幂势既同,则积不容异”.这就是“祖暅原理”.祖暅原理用现代语言可描述为:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面的面积都相等,由此得到新几何体与半球的体积相等,即.现将椭圆轴旋转一周后得到如图3所示的椭球,类比上述方法,运用祖暅原理可求得该椭球的体积为(       
   
A.B.C.D.
2023-06-07更新 | 1120次组卷 | 4卷引用:广东省广州市黄埔区2023届高三模数学试题
7 . 韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段,且过椭圆的下焦点,米,桥塔最高点距桥面米,则此椭圆的离心率为(       
A.B.C.D.
2023-05-29更新 | 918次组卷 | 9卷引用:广东省韶关市2023届高三下学期4月综合测试(二)数学试题
8 . 中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为,且abc不全相等).若该建筑的室内地面是面积为的圆,给出下列结论:①;②;③;④若,则,其中正确命题的个数为(       

A.1B.2C.3D.4
9 . 油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,北京市文化宫开展油纸伞文化艺术节活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞伞沿是一个半径为2的圆,圆心到伞柄底端距离为2,当阳光与地面夹角为时,在地面形成了一个椭圆形影子,且伞柄底端正好位于该椭圆的长轴上,若该椭圆的离心率为e,则       

       

A.B.C.D.
10 . 已知椭圆C上、下顶点分别为,且短轴长为T为椭圆上(除外)任意一点,直线的斜率之积为分别为左、右焦点.
(1)求椭圆C的方程.
(2)“天眼”是世界上最大、最灵敏的单口径射电望远镜,它的外形像一口“大锅”,可以接收到百亿光年外的电磁信号.在“天眼”的建设中,用到了大量的圆锥曲线的光学性质,请以上面的椭圆C为代表,证明:由焦点发出的光线射到椭圆上任意一点M后反射,反射光线必经过另一焦点.(提示:光线射到曲线上某点并反射时,法线垂直于该点处的切线)
2023-05-14更新 | 612次组卷 | 4卷引用:模块十 考前必读 最后押题
共计 平均难度:一般