解题方法
1 . 已知椭圆的右焦点为,直线.
(2)若直线与椭圆交于两点,且的面积为,求;
(1)若到直线的距离为,求;
(2)若直线与椭圆交于两点,且的面积为,求;
您最近一年使用:0次
名校
解题方法
2 . 已知椭圆的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2. 已知直线与椭圆C交于A,B两点,且与x轴,y轴交于M,N两点.
(1)求椭圆C的标准方程;
(2)若,求k的值;
(3)若点Q的坐标为,求证:为定值.
(1)求椭圆C的标准方程;
(2)若,求k的值;
(3)若点Q的坐标为,求证:为定值.
您最近一年使用:0次
2023-12-25更新
|
1460次组卷
|
10卷引用:上海市嘉定区第二中学2023-2024学年高二下学期3月月考数学试题
上海市嘉定区第二中学2023-2024学年高二下学期3月月考数学试题【全国市级联考】天津市部分区2018年高三质量调查(二)数学(文)试题(已下线)专题44 盘点圆锥曲线中的定值问题——备战2022年高考数学二轮复习常考点专题突破上海交通大学附属中学2023届高三下学期期中数学试题(已下线)重难点突破16 圆锥曲线中的定点、定值问题 (十大题型)-1上海市浦东新区进才中学2023-2024学年高二上学期12月月考数学试题广东省广州市广东实验中学2024届高三上学期大湾区数学冲刺卷(一)宁夏银川市宁夏育才中学2023-2024学年高三上学期月考五数学(理科)试卷上海市新川中学2023-2024学年高二上学期期末数学试题广西壮族自治区百色市德保县德保高中2023-2024学年高二下学期3月月考数学试题
名校
解题方法
3 . 已知椭圆的离心率为,焦距为2,过的左焦点的直线与相交于,两点,与直线相交于点.
(1)求椭圆方程;
(2)若,求证:;
(3)过点作直线的垂线与相交于,两点,与直线相交于点.求的最大值.
(1)求椭圆方程;
(2)若,求证:;
(3)过点作直线的垂线与相交于,两点,与直线相交于点.求的最大值.
您最近一年使用:0次
4 . 如图,曲线由两个椭圆:和椭圆:组成,当、、成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且、、的公比为.
(1)求猫眼曲线的方程;
(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,直线、直线的斜率分别为、,试问:是否为与无关的定值?若是,请求出定值;若不是,请说明理由;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,,为椭圆上的任意一点(点与点,不重合),求面积的最大值.
(1)求猫眼曲线的方程;
(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,直线、直线的斜率分别为、,试问:是否为与无关的定值?若是,请求出定值;若不是,请说明理由;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,,为椭圆上的任意一点(点与点,不重合),求面积的最大值.
您最近一年使用:0次
22-23高三上·上海浦东新·阶段练习
名校
解题方法
5 . 已知曲线的左、右焦点分别为,直线经过且与相交于两点.(1)求的周长;
(2)若以为圆心的圆截轴所得的弦长为,且与圆相切,求的方程;
(3)设的斜率为,在轴上是否存在一点,使得且?若存在,求出的坐标;若不存在,请说明理由.
(2)若以为圆心的圆截轴所得的弦长为,且与圆相切,求的方程;
(3)设的斜率为,在轴上是否存在一点,使得且?若存在,求出的坐标;若不存在,请说明理由.
您最近一年使用:0次
2022-10-01更新
|
600次组卷
|
3卷引用:上海市嘉定区2023届高三下学期2月调研数学试题
6 . 椭圆,过椭圆外一点作椭圆的两条切线,切点分别为和的夹角为.
(1)若,求此时的值;
(2)若,求证:随的增大而减小;
(3)是否存在圆,使得在其上做圆周运动时,始终可以保持?不论存在与否,均请说明理由.
(1)若,求此时的值;
(2)若,求证:随的增大而减小;
(3)是否存在圆,使得在其上做圆周运动时,始终可以保持?不论存在与否,均请说明理由.
您最近一年使用:0次
名校
解题方法
7 . 设常数且,椭圆:,点是上的动点.
(1)若点的坐标为,求的焦点坐标;
(2)设,若定点的坐标为,求的最大值与最小值;
(3)设,若上的另一动点满足(为坐标原点),求证:到直线PQ的距离是定值.
(1)若点的坐标为,求的焦点坐标;
(2)设,若定点的坐标为,求的最大值与最小值;
(3)设,若上的另一动点满足(为坐标原点),求证:到直线PQ的距离是定值.
您最近一年使用:0次
2021-12-23更新
|
1026次组卷
|
7卷引用:上海市嘉定区第二中学2022-2023学年高二上学期期中数学试题
上海市嘉定区第二中学2022-2023学年高二上学期期中数学试题上海市黄浦区2022届高三一模数学试题(已下线)上海市黄浦区2022届高三上学期一模数学试题(已下线)专题10.3—圆锥曲线—椭圆大题(定值问题)—2022届高三数学一轮复习精讲精练上海市崇明中学2021-2022学年高二下学期期中数学试题(已下线)押全国卷(理科)第20题 圆锥曲线-备战2022年高考数学(理)临考题号押题(全国卷)上海市格致中学2023-2024学年高二下学期期末考数学试卷
名校
解题方法
8 . 为了监测某海域的船舶航行情况,海事部门在该海域,设立了如图所示东西走向,相距海里的,两个观测站,观测范围是到,两观测站距离之和不超过海里的区域.
(1)以所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,求观测区域边界曲线的方程;
(2)某日上午7时,观测站B发现在其正东10海里的C处,有一艘轮船正以每小时8海里的速度向北偏西45°方向航行,问该轮船大约在什么时间离开观测区域?(精确到1小时).
(1)以所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,求观测区域边界曲线的方程;
(2)某日上午7时,观测站B发现在其正东10海里的C处,有一艘轮船正以每小时8海里的速度向北偏西45°方向航行,问该轮船大约在什么时间离开观测区域?(精确到1小时).
您最近一年使用:0次
2021-08-16更新
|
354次组卷
|
2卷引用:上海市嘉定区第一中学2021届高三下学期3月月考数学试题
9 . 已知椭圆方程,直线与椭圆相交于两点,O为坐标原点,是否存在实数k满足,若不存在说明理由,若存在求出实数k的值.
您最近一年使用:0次
名校
解题方法
10 . 已知椭圆:()的左右焦点分别为,,且椭圆上一点P,满足.
(1)求椭圆C的标准方程;
(2)设椭圆C的左顶点为A,若椭圆C上存在点Q,使得四边形是平行四边形(其中O为坐标原点,点P在第一象限),求直线与的斜率之积:
(3)记圆为椭圆C的“关联圆”.过点P作椭圆C的“关联圆”的两条切线,切点为M、N,直线的横、纵截距分别为m、n,求证:为定值.
(1)求椭圆C的标准方程;
(2)设椭圆C的左顶点为A,若椭圆C上存在点Q,使得四边形是平行四边形(其中O为坐标原点,点P在第一象限),求直线与的斜率之积:
(3)记圆为椭圆C的“关联圆”.过点P作椭圆C的“关联圆”的两条切线,切点为M、N,直线的横、纵截距分别为m、n,求证:为定值.
您最近一年使用:0次