组卷网 > 知识点选题 > 杨辉三角
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 32 道试题
1 . 如图所示,在杨辉三角中,斜线上方箭头所示的数组成一个锯齿形的数列:记这个数列前项和为,则 __________
   
2023-08-01更新 | 262次组卷 | 3卷引用:安徽省滁州市定远县育才学校2022-2023学年高二下学期期末考试数学试卷
填空题-双空题 | 适中(0.65) |
2 . “杨辉三角”是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的第3个数6为第3行中两个3的和.记“杨辉三角”第行的第个数为,请用组合数第行写出______,则______.
   
2023-07-22更新 | 215次组卷 | 1卷引用:云南省保山市文山州2022-2023学年高二下学期期末考试数学试题
3 . 在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图所示.那么,在“杨辉三角”中,第__________行会出现三个相邻的数,其比为
第0行                 1
第1行               1   1
第2行             1   2   1
第3行            1   3   3   1
第4行          1   4   6   4   1
第5行       1   5   10   10   5   1
2023-12-14更新 | 594次组卷 | 4卷引用:辽宁省本溪市第一中学2021-2022学年高二上学期期末数学试题
4 . 杨辉是我国南宋时期数学家,在其所著的《详解九章算法》一书中,辑录了图①所示的三角形数表,这比欧洲早500多年.杨辉三角本身包含很多性质,并有广泛的应用.借助图②所示的杨辉三角,可以得到,从第0行到第行:第1斜列之和;第2斜列之和.类比以上结论,并解决如下问题:图③所示为一个层三角垛,底层是每边堆个圆球的三角形(底层堆积方式如图所示),向上逐层每边少1个,顶层是1个.则小球总数______
2023-07-09更新 | 277次组卷 | 3卷引用:四川省资阳市2022-2023学年高二下学期期末数学理科试题
智能选题,一键自动生成优质试卷~
5 . 如图,在杨辉三角中,斜线上方箭头所示的数组成一个锯齿形的数列:,记这个数列的前项和为,则的值为__________.
   
2023-06-27更新 | 272次组卷 | 3卷引用:江苏省连云港市2022-2023学年高二下学期期末数学试题
6 . 杨辉三角在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中被记载,它的开头几行如图所示,它包含了很多有趣的组合数性质,如果将杨辉三角从第1行开始的每一个数都换成分数,得到的三角形称为“莱布尼茨三角形”,莱布尼茨由它得到了很多定理,甚至影响到了微积分的创立,则“莱布尼茨三角形”第8行第5个数是____________;若,则____________(用含n的代数式作答).
7 . “杨辉三角”是中国古代数学文化的瑰宝之一,最早在年中国南宋数学家杨辉所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在年才发现这一规律,比杨辉要晩近四百年.如图所示的杨辉三角中,从第行开始,每一行除外,其他每一个数字都是其上一行的左右两个数字之和,若在杨辉三角中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第______行.
2023-03-02更新 | 761次组卷 | 3卷引用:辽宁省丹东市2022-2023学年高二上学期期末数学试题
8 . 杨辉是我国南宋末年的一位杰出的数学家,其著作《详解九章算术》中画了一张表示二项式展开式后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现简称为“杨辉三角”,比西方的“帕斯卡三角形”早了300多年,若用表示三角形数阵中的第m行第n个数,则______(结果用数字作答).
2023-01-17更新 | 707次组卷 | 3卷引用:辽宁省沈阳市第二中学2021-2022学年高二上学期期末数学试题
9 . 如图所示的杨辉三角中,从第行开始,每一行除两端的数字是以外,其他每一个数字都是它肩上两个数字之和在此数阵中,若对于正整数,第行中最大的数为,第行中最大的数为,且,则的值为______
2022-07-29更新 | 898次组卷 | 7卷引用:安徽省滁州市2021-2022学年高二下学期期末数学试题
10 . “杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.它揭示了二项式系数在三角形中的一种几何排列规律,早在南宋时期数学家杨辉1261年所著的《详解九章算法》一书中出现这一规律,而欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.如图,在由二项式系数所构成的“杨辉三角”中,第11行中从左至右第5与第6个数的比值为_________
2022-07-16更新 | 416次组卷 | 3卷引用:福建省福州市八县(市)协作校2021-2022学年高二下学期期末联考数学试题
共计 平均难度:一般