组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 19 道试题
1 . 清明小长假期间,大连市共接待客流322.11万人次,游客接待量与收入达到同期历史峰值,其中到东港旅游的人数达到百万之多.现对到东港旅游的部分游客做问卷调查,其中的人只游览东方水城,另外的人游览东方水城和港东五街.若某位游客只游览东方水城,记1分,若两项都游览,记2分.视频率为概率,解答下列问题.
(1)从到东港旅游的游客中随机抽取3人,记这3人的合计得分为,求的分布列和数学期望;
(2)从到东港旅游的游客中随机抽取,记这人的合计得分恰为分的概率为,求
(3)从到东港旅游的游客中随机抽取10人,其中两处景点都去的人数为.记两处景点都去的人数为的概率为,写出的表达式,并求出当为何值时,最大?
2024-05-12更新 | 616次组卷 | 3卷引用:辽宁省大连市滨城高中联盟2023-2024学年高二下学期期中考试数学试卷
2 . 乒乓球,被称为中国的“国球”.某中学对学生参加乒乓球运动的情况进行调查,将每周参加乒乓球运动超过2小时的学生称为“乒乓球爱好者”,否则称为“非乒乓球爱好者”,从调查结果中随机抽取100份进行分析,得到数据如表所示:

乒乓球爱好者

非乒乓球爱好者

总计

40

56

24

总计

100

(1)补全列联表,并判断我们能否有的把握认为是否为“乒乓球爱好者”与性别有关?
(2)为了解学生的乒乓球运动水平,现从抽取的“乒乓球爱好者”学生中按性别采用分层抽样的方法抽取3人,与体育老师进行乒乓球比赛,其中男乒乓球爱好者获胜的概率为,女乒乓球爱好者获胜的概率为,每次比赛结果相互独立,记这3人获胜的人数为,求的分布列和数学期望.

0.05

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:
2024-04-10更新 | 1055次组卷 | 6卷引用:辽宁省大连市第八中学2023-2024学年高二下学期期中考试数学试题
3 . 某微信群群主为了了解微信随机红包的金额拆分机制,统计了本群最近一周内随机红包(假设每个红包的总金额均相等)的金额数据(单位:元),绘制了如下频率分布直方图.
   
(1)根据频率分布直方图估计红包金额的平均值与众数;
(2)群主预告今天晚上7点将有3个随机红包,每个红包的总金额均相等且每个人都能抢到红包.小明是该群的一位成员,以频率作为概率,求小明至少两次抢到10元以上金额的红包的概率.
(3)在春节期间,群主为了活跃气氛,在群内发起抢红包游戏规定:每轮“手气最佳”者发下一轮红包,每个红包发出后,所有人都参与抢红包.第一个红包由群主发.根据以往抢红包经验,群主自己发红包时,抢到“手气最佳”的概率为;其他成员发红包时,群主抢到“手气最佳”的概率为.设前轮中群主发红包的次数为,第轮由群主发红包的概率为.求的期望.
2024-03-23更新 | 2042次组卷 | 5卷引用:辽宁省大连市第八中学2023-2024学年高二下学期期中考试数学试题
4 . 在某游戏中,小明遇到了如图的开关阵列,每个开关只有开和关两个状态,摁下某个开关会导致自身及相邻位置的开关状态发生变化.例如摁下会导致发生状态变化.开始时所有开关均关闭.
(1)如果随机摁下一个开关,求最终状态为“打开”的的开关数目为4的概率.
(2)如果从上两排六个开关中随机选择并摁下两个不同的开关,求摁下第一排和第二排各一个开关的概率.
(3)如果依次按下两个开关,求最终状态为“打开”的开关数目为4的概率.
2023-12-14更新 | 385次组卷 | 2卷引用:辽宁省大连市2022-2023学年高一上学期期末数学模拟试题
智能选题,一键自动生成优质试卷~
5 . 人工智能是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某校成立了两个研究性小组,分别设计和开发不同的软件用于识别音乐的类别:“古典音乐”、“流行音乐”和“民族音乐”.为测试软件的识别能力,计划采取两种测试方案.
方案一:将首音乐随机分配给两个小组识别.每首音乐只被一个软件识别一次,并记录结果;
方案二:对同一首音乐,两组分别识别两次,如果识别的正确次数之和不少于三次,则称该次测试通过.
(1)若方案一的测试结果显示:正确识别的音乐数之和占总数的;在正确识别的音乐数中,组占;在错误识别的音乐数中,组占
(i)用频率估计概率,两个研究性小组的软件每次能正确识别音乐类别的概率分别为多少?
(ii)利用(i)中的结论,求方案二在一次测试中获得通过的概率:
(2)若方案一的测试结果如下:

音乐类别

小组

小组

测试音乐数量

正确识别比例

测试音乐数量

正确识别比例

古典音乐

流行音乐

民族音乐

小组、小组识别的歌曲中各任选首,记分别为小组、小组正确识别的数量,试比较的大小(直接写出结果即可).
2023-05-28更新 | 584次组卷 | 3卷引用:辽宁省大连市第八中学2022-2023学年高二下学期6月月考数学试题
6 . 为纪念中国共产党成立102周年,加深青少年对党的历史、党的知识、党的理论和路线方针的认识,激发爱党爱国热情,坚定走新时代中国特色社会主义道路的信心,我校举办了党史知识竞赛.竞赛规则是:两人一组,每一轮竞赛中,小组两人分别答3道题,若答对题目不少于5道题,则获得一个积分.已知甲乙两名同学一组,甲同学和乙同学对每道题答对的概率分别是,且每道题答对与否互不影响.
(1)若,求甲乙同学这一组在一轮竞赛中获得一个积分的概率;
(2)若,且每轮比赛互不影响,若甲乙同学这一组想至少获得7个积分,那么理论上至少要进行多少轮竞赛?
2023-05-24更新 | 985次组卷 | 3卷引用:辽宁省大连市第二十四中学2023届高三第六次模拟考试数学试卷
7 . 国学小组有编号为1,2,3,…,位同学,现在有两个选择题,每人答对第一题的概率为、答对第二题的概率为,每个同学的答题过程都是相互独立的,比赛规则如下:①按编号由小到大的顺序依次进行,第1号同学开始第1轮出赛,先答第一题;②若第号同学未答对第一题,则第轮比赛失败,由第号同学继继续比赛;③若第号同学答对第一题,则再答第二题,若该生答对第二题,则比赛在第轮结束;若该生未答对第二题,则第轮比赛失败,由第号同学继续答第二题,且以后比赛的同学不答第一题;④若比赛进行到了第轮,则不管第号同学答题情况,比赛结束.
(1)令随机变量表示名同学在第轮比赛结束,当时,求随机变量的分布列;
(2)若把比赛规则③改为:若第号同学未答对第二题,则第轮比赛失败,第号同学重新从第一题开始作答.令随机变量表示名挑战者在第轮比赛结束.
①求随机变量的分布列;
②证明:单调递增,且小于3.
8 . 党的二十大报告中指出,建设现代化产业体系,坚持把发展经济的着力点放在实体经济上,推进新型工业化,加快建设制造强国、质量强国、航天强国、交通强国、网络强国、数字中国.某装备制造企业对现有生产设备进行技术攻坚突破.设备生产的零件的直径为X(单位nm).
(1)现有旧设备生产的零件共7个,其中直径大于10nm的有4个.现从这7个零件中随机抽取3个.记表示取出的零件中直径大于10nm的零件的个数,求的分布列及数学期望
(2)技术攻坚突破后设备生产的零件的合格率为,每个零件是否合格相互独立.现任取6个零件进行检测,若合格的零件数超过半数,则可认为技术攻坚成功.求技术攻坚成功的概率及的方差;
(3)若技术攻坚后新设备生产的零件直径,从生产的零件中随机取出10个,求至少有一个零件直径大于9.03nm的概率.
参考数据:,标准正态分布函数表如下:

a

0

1

2

3

4

5

6

7

8

9

0.0

.5000

.5040

.5080

.5120

.5160

.5199

.5239

.5279

.5319

.5359

0.1

.5398

.5438

.5478

.5517

.5557

.5596

.5636

.5675

.5714

.5753

0.2

.5793

.5832

.5871

.5910

.5948

.5987

.6026

.6064

.6103

.6141

0.3

.6179

.6217

.6255

.6293

.6331

.6368

.6406

.6443

.6480

.6517

0.4

.6554

.6591

.6628

.6664

.6700

.6736

.6772

.6808

.6844

.6879

0.5

.6915

.6950

.6985

.7019

.7054

.7088

.7123

.7157

.7190

.7224

2023-04-05更新 | 458次组卷 | 1卷引用:辽宁省大连市第一中学2022-2023学年高二下学期4月月考数学试题
9 . 某地区为居民集体筛查新型传染病毒,需要核酸检测,现有份样本,有以下两种检验方案,方案一,逐份检验,则需要检验k次;方案二:混合检验,将k份样本分别取样混合在一起检验一次,若检验结果为阴性,则k份样本均为阴性,若检验结果为阳性,为了确定k份样本的阳性样本,则对k份本再逐一检验.逐份检验和混合检验中的每一次检验费用都是16元,且k份样本混合检验一次需要额外收20元的材料费和服务费.假设在接受检验的样本中,每份样本是否为阳性是相互独立的,且据统计每份样本是阴性的概率为
(1)若份样本采用混合检验方案,需要检验的总次数为X,求X分布列及数学期望;
(2)①若,以检验总费用为决策依据,试说明该单位选择方案二的合理性;
②若,采用方案二总费用的数学期望低于方案一,求k的最大值.
参考数据:
2022-12-30更新 | 559次组卷 | 2卷引用:辽宁省大连市2023届高三上学期期末双基测试数学试题
10 . 甲、乙是北京2022冬奥会单板滑雪坡面障碍技巧项目的参赛选手,二人在练习赛中均需要挑战3次某高难度动作,每次挑战的结果只有成功和失败两种.
(1)甲在每次挑战中,成功的概率都为.设X为甲在3次挑战中成功的次数,求X的分布列和数学期望;
(2)乙在第一次挑战时,成功的概率为0.5,受心理因素影响,从第二次开始,每次成功的概率会发生改变其规律为:若前一次成功,则该次成功的概率比前一次成功的概率增加0.1;若前一次失败,则该次成功的概率比前一次成功的概率减少0.1.
(ⅰ)求乙在前两次挑战中,恰好成功一次的概率;
(ⅱ)求乙在第二次成功的条件下,第三次成功的概率.
共计 平均难度:一般