名校
解题方法
1 . 一个袋子内装有若干个颜色为红、白、黑的小球(除颜色外,大小完全相同),红球、白球、黑球的个数比为,若从中随机抽取个小球,取到异色球的概率为.
(1)求袋子内小球的个数;
(2)若从中随机抽取个小球,设取出白球的个数记为,求的分布列和数学期望;
(3)若一次只抽取个小球,抽取两次(第一次抽取的小球不放回),求第二次抽取的是黑球的条件下,第一次抽取的是红球的概率.
(1)求袋子内小球的个数;
(2)若从中随机抽取个小球,设取出白球的个数记为,求的分布列和数学期望;
(3)若一次只抽取个小球,抽取两次(第一次抽取的小球不放回),求第二次抽取的是黑球的条件下,第一次抽取的是红球的概率.
您最近一年使用:0次
2024-04-24更新
|
976次组卷
|
4卷引用:江苏省扬州市新华中学2025届高三上学期自主练习二(10月月考)数学试题
江苏省扬州市新华中学2025届高三上学期自主练习二(10月月考)数学试题江苏省沭阳如东中学2023-2024学年高二下学期期中考试数学试题(已下线)专题03 第七章 随机变量及其分布列--高二期末考点大串讲(人教A版2019)2024届江苏省前黄高级中学高三下学期攀登行动(二)数学试题
2 . 某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道题进行测试,若这6道题中,甲能正确解答其中的4道,乙能正确解答每个题目的概率均为,假设甲、乙两名学生解答每道测试题都相互独立、互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答
(1)求甲、乙共答对2道题目的概率;
(2)设甲答对题数为随机变量X,求X的分布列、数学期望和方差;
(3)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?
(1)求甲、乙共答对2道题目的概率;
(2)设甲答对题数为随机变量X,求X的分布列、数学期望和方差;
(3)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?
您最近一年使用:0次
2024-04-02更新
|
2608次组卷
|
10卷引用:江苏省扬州市仪征市精诚高级中学2023-2024学年高二下学期5月月考数学试题
江苏省扬州市仪征市精诚高级中学2023-2024学年高二下学期5月月考数学试题广东省东莞市东华高级中学2022-2023学年高二下学期期中考试数学试卷(已下线)高二下学期期中模拟卷(新题型)(导数+计数原理+随机变量及其分布+统计)-2023-2024学年高二数学题型分类归纳讲与练(人教A版2019选择性必修第三册)(已下线)第七章:随机变量及其分布章末重点题型复习(7题型)-2023-2024学年高二数学同步精品课堂(人教A版2019选择性必修第三册)吉林省长春市第五中学2023-2024年高二下学期第二学程数学试题四川省眉山市彭山区第一中学2023-2024学年高二下学期5月月考数学试题河北省承德市2023-2024学年高二年级下学期5月联考数学试题(已下线)专题01 高二下期末真题精选(2)--高二期末考点大串讲(人教A版2019)四川省仁寿第一中学校(北校区)2023-2024学年高二下学期7月期末考试数学试题青海省西宁市海湖中学2023-2024学年高二下学期第二阶段考试数学试卷
3 . 下列说法正确的有( )
A.若随机变量,,则 |
B.若随机变量,则方差 |
C.从10名男生,5名女生中任选4人,选出的女生个数X服从超几何分布 |
D.已如随机变量的分布列为,则 |
您最近一年使用:0次
2023-06-22更新
|
437次组卷
|
5卷引用:江苏省扬州市高邮市2022-2023学年高二下学期4月学情调研测试数学试题
名校
解题方法
4 . 《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布,并把质量差在内的产品为优等品,质量差在内的产品为一等品,其余范围内的产品作为废品处理优等品与一等品统称为正品现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:(1)根据频率分布直方图,求样本平均数
(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数作为的近似值,用样本标准差作为的估计值,求该厂生产的产品为正品的概率.(同一组中的数据用该组区间的中点值代表)
[参考数据:若随机变量服从正态分布,则:,,].
(3)假如企业包装时要求把3件优等品球和6件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件数为,求的分布列以及期望值.
(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数作为的近似值,用样本标准差作为的估计值,求该厂生产的产品为正品的概率.(同一组中的数据用该组区间的中点值代表)
[参考数据:若随机变量服从正态分布,则:,,].
(3)假如企业包装时要求把3件优等品球和6件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件数为,求的分布列以及期望值.
您最近一年使用:0次
2022-10-20更新
|
493次组卷
|
12卷引用:江苏省扬州市邗江区蒋王中学2020-2021学年高三上学期10月学情检测数学试题
江苏省扬州市邗江区蒋王中学2020-2021学年高三上学期10月学情检测数学试题山东省、海南省新高考2019-2020学年高三4月份数学模拟试题黑龙江省大庆实验中学2020-2021学年高三上学期期末数学理科试题福建省漳州市2021届高三毕业班适应性测试(一)数学试题(已下线)2021届高三高考数学适应性测试八省联考考后仿真系列卷十陕西省宝鸡市千阳中学2021届高三下学期三模数学试题湖南省长郡十五校2020-2021学年高三上学期第一次联考数学试题山东省“学情空间”区域教研共同体2022-2023学年高三上学期入学考试数学试题新疆乌鲁木齐市第八中学2023届高三上学期第一次月考数学(理)试题湖北省孝感市新高考联考协作体2022-2023学年高三上学期9月联考数学试题新疆克拉玛依市高级中学2022-2023学年高三下学期第一次闭环检测理科数学试题山西省晋中市榆次区第二中学2023-2024学年高二下学期期末考试数学试题
名校
5 . 某厂工会在征求职工对节假日期间的业余生活安排意见时,随机抽取200名职工(其中35岁以下职工占75%)进行问卷调查.统计数据显示,35岁以下职工愿意观看电影的占80%,35岁及以上职工愿意观看电影的占40%.
(1)完成下列2×2联列表,并判断能否有99.9%的把握认为观看电影与年龄有关.
(2)该厂工会节假日期间共组织4次观看电影活动,统计35岁以下职工观看电影场次如表:
现采用分层抽样的方法从中抽取10人,再从这10人中随机抽取2人,记这2人观看电影的总场次为X,求X的概率分布和数学期望.
附:,其中.
(1)完成下列2×2联列表,并判断能否有99.9%的把握认为观看电影与年龄有关.
愿意观看电影 | 不愿意观看电影 | 合计 | |
35岁以下 | |||
35岁及以上 | |||
合计 |
观看场次 | 1 | 2 | 3 | 4 |
占比 | 40% | 30% | 20% | 10% |
附:,其中.
0.010 | 0.005 | 0.001 | |
k0 | 6.635 | 7.879 | 10.828 |
您最近一年使用:0次
2021-06-26更新
|
739次组卷
|
3卷引用:江苏省广陵区红桥高级中学2023-2024学年高二下学期5月月考数学试题
名校
6 . 某省年开始将全面实施新高考方案.在门选择性考试科目中,物理、历史这两门科目采用原始分计分;思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为,,,,共个等级,各等级人数所占比例分别为、、、和,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.
(1)某校生物学科获得等级的共有10名学生,其原始分及转换分如下表:
现从这10名学生中随机抽取3人,设这3人中生物转换分不低于分的人数为,求的分布列和数学期望;
(2)假设该省此次高一学生生物学科原始分服从正态分布.若,令,则,请解决下列问题:
①若以此次高一学生生物学科原始分等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留为整数)
②现随机抽取了该省名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记为被抽到的原始分不低于分的学生人数,求取得最大值时的值.
附:若,则,.
(1)某校生物学科获得等级的共有10名学生,其原始分及转换分如下表:
原始分 | 91 | 90 | 89 | 88 | 87 | 85 | 83 | 82 |
转换分 | 100 | 99 | 97 | 95 | 94 | 91 | 88 | 86 |
人数 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
现从这10名学生中随机抽取3人,设这3人中生物转换分不低于分的人数为,求的分布列和数学期望;
(2)假设该省此次高一学生生物学科原始分服从正态分布.若,令,则,请解决下列问题:
①若以此次高一学生生物学科原始分等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留为整数)
②现随机抽取了该省名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记为被抽到的原始分不低于分的学生人数,求取得最大值时的值.
附:若,则,.
您最近一年使用:0次
2020-06-05更新
|
4521次组卷
|
17卷引用:江苏省扬州市高邮市第一中学2020-2021学年高三上学期9月阶段性测试数学试题
江苏省扬州市高邮市第一中学2020-2021学年高三上学期9月阶段性测试数学试题福州市2020届高三毕业班第三次质量检查理科数学试题江苏省苏州市2020-2021学年高三上学期9月期初调研数学试题山东省泰安市2019-2020学年下学期高二期末考试数学试题江苏省苏州市相城区陆慕高级中学2020-2021学年高三上学期期初数学试题江苏省南京市第十三中学2021-2022学年高二下学期初数学试题(已下线)专题12 四大分布:两点分布、超几何分布、二项分布、正态分布-2021-2022学年高二数学下学期期末必考题型归纳及过关测试(人教A版2019)(已下线)专题14 概率、统计、期望(已下线)专题9-1 概率与统计及分布列归类(理)(讲+练)-1(已下线)第四篇 概率与统计 专题2 最可能成功次数 微点1 最可能成功次数广东省茂名市华南师范大学附属电白学校2023届高三下学期5月调研数学试题(已下线)第四篇 概率与统计 专题7 常见分布 微点2 其它分布2023年全国中学生数学能力测评(终评)高三年级组试题(已下线)结业测试卷(范围:第五、六、七章)(提高篇)-【寒假预科讲义】2024年高二数学寒假精品课(人教A版2019)河南省南阳市2023-2024学年高二上学期期终质量评估数学试题(已下线)第1讲:二项式定理和二项分布的最值问题【练】(已下线)第三章 随机变量及其分布列 专题三 重要的概率分布模型 微点2 重要的概率分布模型(二)【基础版】