组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 11 道试题
1 . 小李,小王相约周日到晋祠游玩,两人约定早上7:00各自从家出发,小李乘坐301路公交,路上所需时间(单位:分钟)服从正态分布N(44,4).小王乘坐804路公交,路上所需时间(单位:分钟)服从正态分布N(40,16).下列说法从统计角度可认为不合理的是(       
参考数据: ,则)
A.小王在7:28前到达晋祠的可能性不超过1%
B.小王比小李在7:50前到达晋祠的可能性更小
C.小李和小王在7:48前到达晋祠的可能性一样
D.小李比小王在7:44前到达晋祠的可能性更大
2023-04-18更新 | 464次组卷 | 3卷引用:山西省际名校2023届高三联考二(冲刺卷)数学试题(A)
2 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查学生对两会相关知识的了解情况,某高中学校开展了两会知识问答活动,现从全校参与该活动的学生中随机抽取320名学生,他们的得分(满分100分)的频率分布折线图如下.

(1)若此次知识问答的得分,用样本来估计总体,设分别为被抽取的320名学生得分的平均数和标准差,求的值;
(2)学校对这些被抽取的320名学生进行奖励,奖励方案如下:用频率估计概率,得分小于或等于55的学生获得1次抽奖机会,得分高于55的学生获得2次抽奖机会.假定每次抽奖抽到价值10元的学习用品的概率为,抽到价值20元的学习用品的概率为.从这320名学生中任取一位,记该同学在抽奖活动中获得学习用品的价值总额为元,求的分布列和数学期望(用分数表示),并估算此次抽奖要准备的学习用品的价值总额.
参考数据:.
2023-04-09更新 | 3628次组卷 | 11卷引用:山西省部分学校2023届高三下学期4月联考数学试题
3 . 某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获得一等奖,其他学生不得奖,为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.

(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若该市所有参赛学生的成绩X近似服从正态分布,其中为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量X服从正态分布,则
4 . 我国脱贫攻坚经过8年奋斗,取得了重大胜利.为巩固脱贫攻坚成果,某项目组对某种农产品的质量情况进行持续跟踪,随机抽取了10件产品,检测结果均为合格,且质量指标分值如下:38,70,50,45,48,54,49,57,60,69,已知质量指标不低于60分的产品为优质品.
(1)从这10件农产品中任意抽取两件农产品,记这两件农产品中优质品的件数为Y,求Y的分布列和数学期望
(2)根据生产经验,可以认为这种农产品的质量指标服从正态分布,其中近似为样本质量指标平均数,近似为方差,生产合同中规定,所有农产品优质品的占比不得低于15%.那么这种农产品是否满足生产合同的要求?请说明理由.
附:若,则.
智能选题,一键自动生成优质试卷~
5 . 年五一节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握五一节期间车辆出行的高峰情况,在某高速公路收费站点记录了日上午这一时间段内通过的车辆数,统计发现这一时间段内共有辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段记作记作记作记作,例如:,记作时刻.

(1)估计这辆车在时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代替)
(2)为了对数据进行分析,现采用分层抽样的方法从这辆车中抽取辆,再从这辆车中随机抽取辆,设抽到的辆车中,在之间通过的车辆数为,求的分布列;
(3)根据大数据分析,车辆在每天通过该收费站点的时刻服从正态分布,其中可用日数据中的辆车在之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(经计算样本方差为).假如日上午这一时间段内共有辆车通过该收费站点,估计在之间通过的车辆数(结果保留到整数)
附:;若随机变量服从正态分布,则.
2022-02-15更新 | 1072次组卷 | 17卷引用:山西省山西大学附属中学校2022届高三上学期8月模块诊断数学(理)试题

6 . 某纺织厂为了生产一种高端布料,准备从A农场购进一批优质棉花,厂方技术员从A农场存储的优质棉花中随机抽取了100处棉花,分别测量了其纤维长度(单位:mm)的均值,收集到100个样本数据,并制成如下频数分布表:

长度(单位:mm)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33)

[33,35)

[35,37)

[37,39]

频数

4

9

16

24

18

14

10

5


(1)求这100个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)将收集到的数据绘成直方图可以认为这批棉花的纤维长度服从分布
其中

①利用正态分布,求

②纺织厂将A农场送来的这批优质棉进行二次检验,从中随机抽取20处测量其纤维均值yii=1,2…,20),数据如下:

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

24.1

31.8

32.7

28.2

28.4

34.3

29.1

34.8

37.2

30.8

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

30.6

25.2

32.9

27.1

35.9

28.9

33.9

29.5

35.0

29.9

若20个样本中纤维均值的频率不低于①中即可判断该批优质棉花合格,否则认为农场运送时掺杂了次品,判断该批棉花不合格.按照此依据判断A农场送来的这批棉花是否为合格的优质棉花,并说明理由.

附:若,则

2022-11-08更新 | 523次组卷 | 6卷引用:【省级联考】山西省2019届高三高考考前适应性训练(三)理科数学试题
7 . 《江苏省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
(1)求物理原始成绩在区间的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则
2021-09-16更新 | 470次组卷 | 25卷引用:【全国百强校】山西省临汾市临汾一中2018-2019学年高二下学期期中数学试题(理)
8 . 某商场经营的某种包装的大米质量ξ(单位:kg)服从正态分布N(10,σ2),根据检测结果可知P(9.9≤ζ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1000名职工,则分发到的大米质量在9.9kg以下的职工数大约为
A.10B.20C.30D.40
2018-11-19更新 | 732次组卷 | 9卷引用:山西省太原师范学院附属中学2021-2022学年高二下学期第四次月考数学试题
9 . 一次考试中,某班学生的数学成绩近似服从正态分布,则该班数学成绩的及格率可估计为(成绩达到分为及格)(参考数据:
A.B.C.D.
2018-05-03更新 | 882次组卷 | 7卷引用:【全国市级联考】山西省孝义市2018届高三下学期一模考试数学(理)试题
2011·安徽合肥·二模
填空题-单空题 | 适中(0.65) |
名校
10 . 设随机变量服从正态分布,如果,则 ________.
共计 平均难度:一般