参考数据: ,则,,)
A.小王在7:28前到达晋祠的可能性不超过1% |
B.小王比小李在7:50前到达晋祠的可能性更小 |
C.小李和小王在7:48前到达晋祠的可能性一样 |
D.小李比小王在7:44前到达晋祠的可能性更大 |
(1)若此次知识问答的得分,用样本来估计总体,设,分别为被抽取的320名学生得分的平均数和标准差,求的值;
(2)学校对这些被抽取的320名学生进行奖励,奖励方案如下:用频率估计概率,得分小于或等于55的学生获得1次抽奖机会,得分高于55的学生获得2次抽奖机会.假定每次抽奖抽到价值10元的学习用品的概率为,抽到价值20元的学习用品的概率为.从这320名学生中任取一位,记该同学在抽奖活动中获得学习用品的价值总额为元,求的分布列和数学期望(用分数表示),并估算此次抽奖要准备的学习用品的价值总额.
参考数据:,,,,.
(2)若该市所有参赛学生的成绩X近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量X服从正态分布,则,,.
(1)从这10件农产品中任意抽取两件农产品,记这两件农产品中优质品的件数为Y,求Y的分布列和数学期望
(2)根据生产经验,可以认为这种农产品的质量指标服从正态分布,其中近似为样本质量指标平均数,近似为方差,生产合同中规定,所有农产品优质品的占比不得低于15%.那么这种农产品是否满足生产合同的要求?请说明理由.
附:若,则,,.
(1)估计这辆车在时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代替)
(2)为了对数据进行分析,现采用分层抽样的方法从这辆车中抽取辆,再从这辆车中随机抽取辆,设抽到的辆车中,在之间通过的车辆数为,求的分布列;
(3)根据大数据分析,车辆在每天通过该收费站点的时刻服从正态分布,其中可用日数据中的辆车在之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(经计算样本方差为).假如日上午这一时间段内共有辆车通过该收费站点,估计在之间通过的车辆数(结果保留到整数)
附:;若随机变量服从正态分布,则,,.
6 . 某纺织厂为了生产一种高端布料,准备从A农场购进一批优质棉花,厂方技术员从A农场存储的优质棉花中随机抽取了100处棉花,分别测量了其纤维长度(单位:mm)的均值,收集到100个样本数据,并制成如下频数分布表:
长度(单位:mm) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33) | [33,35) | [35,37) | [37,39] |
频数 | 4 | 9 | 16 | 24 | 18 | 14 | 10 | 5 |
(1)求这100个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)将收集到的数据绘成直方图可以认为这批棉花的纤维长度服从分布
其中,
①利用正态分布,求;
②纺织厂将A农场送来的这批优质棉进行二次检验,从中随机抽取20处测量其纤维均值yi(i=1,2…,20),数据如下:
y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 |
24.1 | 31.8 | 32.7 | 28.2 | 28.4 | 34.3 | 29.1 | 34.8 | 37.2 | 30.8 |
y11 | y12 | y13 | y14 | y15 | y16 | y17 | y18 | y19 | y20 |
30.6 | 25.2 | 32.9 | 27.1 | 35.9 | 28.9 | 33.9 | 29.5 | 35.0 | 29.9 |
若20个样本中纤维均值的频率不低于①中即可判断该批优质棉花合格,否则认为农场运送时掺杂了次品,判断该批棉花不合格.按照此依据判断A农场送来的这批棉花是否为合格的优质棉花,并说明理由.
附:若,则,,
(1)求物理原始成绩在区间的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,,)
A.10 | B.20 | C.30 | D.40 |
A. | B. | C. | D. |