组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 6 道试题
1 . 在2021年6月某区的高二期末质量检测考试中,学生的数学成绩服从正态分布.已知参加本次考试的学生约有9450人,如果某学生在这次考试中数学成绩为108分,那么他的数学成绩大约排在该区的名次是______.附:若,则.
2023-01-03更新 | 2080次组卷 | 8卷引用:云南省昆明市官渡区艺卓中学2023届高三下学期第二次月考数学试题
2 . 云南省2016年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布.现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5 cm之间,将测量结果按如下方式分成6组:第一组 [157.5,162.5],第二组[162.5,167.5],…,第6组[182.5,187.5],图是按上述分组方法得到的频率分布直方图.

(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(含177.5 cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5 cm)的人中任意抽取2人,求这2人的身高排名(从高到低)均在全省前130名的概率.
参考数据:若,则.
2022-12-26更新 | 554次组卷 | 2卷引用:云南省昆明市第三中学2022届高三上学期第四次综合测试数学(文)试题
3 . 为普及传染病防治知识,增强市民的疾病防范意识,提高自身保护能力,某市举办传染病防治知识有奖竞赛.现从该市所有参赛者中随机抽取了100名参赛者的竞赛成绩,并以此为样本绘制了如表所示的频率分布表.
竞赛成绩
人数610183316116
(1)求这100名参赛者的竞赛成绩的样本均值和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若该市所有参赛者的成绩X近似地服从正态分布,用样本估计总体,近似为样本均值,近似为样本方差,利用所得正态分布模型解决以下问题:(参考数据:
①如果按照的比例将参赛者的竞赛成绩划分为参与奖、二等奖、一等奖、特等奖四个等级,试确定各等级的分数线(精确到整数);
②若该市共有10000名市民参加了竞赛,试估计参赛者中获得特等奖的人数(结果四舍五入到整数).
附:若随机变量X服从正态分布,则
2022-05-02更新 | 737次组卷 | 4卷引用:云南师范大学附属中学2021-2022学年高二下学期期中数学试题
4 . 某物流公司专营从甲地到乙地的货运业务(货物全部用统一规格的包装箱包装),现统计了最近100天内每天可配送的货物量,按照可配送的货物量(单位:箱)分成了以下几组:,并绘制了如图所示的频率分布直方图(同一组数据用该组数据的区间中点值作代表,将频率视为概率).

(1)该物流公司负责人决定用分层抽样的方法从前3组中随机抽出11天的数据来分析每日的可配送货物量少的原因,并从这11天的数据中再抽出3天的数据进行财务分析,求这3天的数据中至少有2天的数据来自这一组的概率.
(2)由频率分布直方图可以认为,该物流公司每日的可配送货物量(单位:箱)近似服从正态分布,其中近似为样本平均数.
(i)试利用该正态分布,估计该物流公司2000天内日货物配送量在区间内的天数(结果保留整数).
附:若,则.
(ii)该物流公司负责人根据每日的可配送货物量为公司装卸货物的员工制定了两种不同的工作奖励方案.
方案一:直接发放奖金,按每日的可配送货物量划分为三级,时,奖励50元;时,奖励80元;时,奖励120元.
方案二:利用抽奖的方式获得奖金,其中每日的可配送货物量不低于时有两次抽奖机会,每日的可配送货物量低于时只有一次抽奖机会,每次抽奖的奖金及对应的概率为

奖金

50

100

概率

小张为该公司装卸货物的一名员工,试从数学期望的角度分析,小张选择哪种奖励方案对他更有利?
智能选题,一键自动生成优质试卷~
5 . 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
经计算得,其中xi为抽取的第i个零件的尺寸,.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01).
附:若随机变量Z服从正态分布,则.
2020-07-11更新 | 20605次组卷 | 64卷引用:云南省红河州泸西一中2017─2018学年高二上学期期末考试理科数学试题
6 . 某工厂抽取了一台设备在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值,方差;(同一组中的数据用该组区间的中点值作代表)
(2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布,其中近似为样本平均值,近似为样本方差.任取一个产品,记其质量指标值为.若,则认为该产品为一等品;,则认为该产品为二等品;若,则认为该产品为不合格品.已知设备正常状态下每天生产这种产品1000个.
(i)用样本估计总体,问该工厂一天生产的产品中不合格品是否超过
(ii)某公司向该工厂推出以旧换新活动,补足50万元即可用设备换得生产相同产品的改进设备.经测试,设备正常状态下每天生产产品1200个,生产的产品为一等品的概率是,二等品的概率是,不合格品的概率是.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备
参考数据:①;②;③.
2019-05-19更新 | 787次组卷 | 4卷引用:【全国百强校】云南省师范大学附属中学2019届高三第八次月考数学(理)试题
共计 平均难度:一般