组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 44 道试题
1 . 某企业使用新技术对某款芯片制造工艺进行改进.部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记表示事件“某芯片通过智能检测系统筛选”,表示事件“某芯片经人工抽检后合格”.改进生产工艺后,该款芯片的某项质量指标服从正态分布,现从中随机抽取个,这个芯片中恰有个的质量指标位于区间,则下列说法正确的是(       )(若
A.
B.
C.
D.取得最大值时,的估计值为53
2024-05-17更新 | 1576次组卷 | 12卷引用:第8章 概率单元综合能力测试卷-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
2 . 已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.
(1)求该机器生产的零件为不合格品的概率;
(2)从该机器生产的零件中随机抽取n)件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取
2024-03-22更新 | 3403次组卷 | 6卷引用:江苏省南京市、盐城市2024届高三第一次模拟考试数学试题
3 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查居民对两会相关知识的了解情况,某小区开展了两会知识问答活动,现将该小区参与该活动的240位居民的得分(满分100分)进行了统计,得到如下的频率分布直方图.

   

(1)若此次知识问答的得分X服从,其中近似为参与本次活动的240位居民的平均得分(同一组中的数据用该组区间的中点值代表),求的值;
(2)中国移动为支持本次活动提供了大力支持,制定了如下奖励方案:参与本次活动得分低于的居民获得一次抽奖机会,参与本次活动得分不低于的居民获得两次抽奖机会,每位居民每次有的机会抽中一张10元的话费充值卡,有的机会抽中一张20元的话费充值卡,假设每次抽奖相互独立,假设该小区居民王先生参与本次活动,求王先生获得的话费充值卡的总金额Y(单位:元)的概率分布列,并估计本次活动中国移动需要准备的话费充值卡的总金额(单位:元)
参考数据:.
2024-03-17更新 | 853次组卷 | 6卷引用:专题11 统计与概率(分层练)
4 . 树人高中拟组织学生到某航天基地开展天宫模拟飞行器体验活动,该项活动对学生身体体能指标和航天知识素养有明确要求.学校所有3000名学生参加了遴选活动,遴选活动分以下两个环节,当两个环节均测试合格可以参加体验活动.
第一环节:对学生身体体能指标进行测试,当测试值时体能指标合格;
第二环节:对身体体能指标符合要求的学生进行航天知识素养测试,测试方案为对AB两类试题依次作答,均测试合格才能符合遴选要求.每类试题均在题库中随机产生,有两次测试机会,在任一类试题测试中,若第一次测试合格,不再进行第二次测试.若第一次测试不合格,则进行第二次测试,若第二次测试合格,则该类试题测试合格,若第二次测试不合格,则该类试题测试不合格,测试结束.
经过统计,该校学生身体体能指标服从正态分布
参考数值:
(1)请估计树人高中遴选学生符合身体体能指标的人数(结果取整数);
(2)学生小华通过身体体能指标遴选,进入航天知识素养测试,作答A类试题,每次测试合格的概率为,作答B类试题,每次测试合格的概率为,且每次测试相互独立.
①在解答A类试题第一次测试合格的条件下,求测试共进行3次的概率.
②若解答AB两类试题测试合格的类数为X,求X的分布列和数学期望.
2024-03-14更新 | 1101次组卷 | 3卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
智能选题,一键自动生成优质试卷~
5 . 某商场将在“周年庆”期间举行“购物刮刮乐,龙腾旺旺来”活动,活动规则:顾客投掷3枚质地均匀的股子.若3枚骰子的点数都是奇数,则中“龙腾奖”,获得两张“刮刮乐”;若3枚骰子的点数之和为6的倍数,则中“旺旺奖”,获得一张“刮刮乐”;其他情况不获得“刮刮乐”.
(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额内的人数;
附:若,则
(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为
①求顾客获得乙奖品的概率;
②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.
2024-03-12更新 | 1893次组卷 | 5卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
6 . 某制造商生产的5000根金属棒的长度近似服从正态分布,其中恰有114根金属棒长度不小于6.04.
(1)求
(2)如果允许制造商生产这种金属棒的长度范围是(5.95,6.05),那么这批金属棒中不合格的金属棒约有多少根?
说明:对任何一个正态分布来说,通过转化为标准正态分布,从而查标准正态分布表得到
可供查阅的(部分)标准正态分布表

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.8643

0.8849

0.9032

0.9192

0.9332

0.9452

0.9554

0.9641

0.9713

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0.9772

0.9821

0.9861

0.9893

0.9918

0.9938

0.9953

0.9965

0.9974

2024-02-12更新 | 440次组卷 | 4卷引用:江苏省常州市2023-2024学年高三上学期期末学业水平监测数学试卷
7 . 在工业生产中轴承的直径服从,购买者要求直径为,不在这个范围的将被拒绝,要使拒绝的概率控制在之内,则至少为_________;(若,则
2024-02-04更新 | 2118次组卷 | 9卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
8 . 某保险公司有一款保险产品,该产品今年保费为200元/人,赔付金额为5万元/人.假设该保险产品的客户为10000名,每人被赔付的概率均为,记10000名客户中获得赔偿的人数为.
(1)求,并计算该公司今年这一款保险产品利润的期望;
(2)二项分布是离散型的,而正态分布是连续型的,它们是不同的概率分布,但是,随着二项分布的试验次数的增加,二项分布折线图与正态分布曲线几乎一致,所以当试验次数较大时,可以利用正态分布处理二项分布的相关概率计算问题,我们知道若,则,当较大且较小时,我们为了简化计算,常用的值估算的值.
请根据上述信息,求:
①该公司今年这一款保险产品利润为50~100万元的概率;
②该公司今年这一款保险产品亏损的概率.
参考数据:若,则.
2024-01-29更新 | 679次组卷 | 6卷引用:江苏省扬州市2024届高三上学期期末检测数学试题
9 . 为了检测自动包装线生产的罐装咖啡,检验员每天从生产线上随机抽取罐咖啡,并测量其质量(单位:).由于存在各种不可控制的因素,任意抽取的1罐咖啡的质量与标准质量之间存在一定的误差,已知这条包装线在正常状态下,每罐咖啡的质量服从正态分布.假设生产状态正常,记表示每天抽取的罐咖啡中质量在之外的罐数,若的数学期望,则的最小值为(       
附:若随机变量服从正态分布,则.
A.10B.11C.12D.13
2024-01-25更新 | 480次组卷 | 5卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
10 . 某公司为了解市场对其开发的新产品的需求情况,共调查了250名顾客,采取100分制对产品功能满意程度、产品外观满意程度分别进行评分,其中对产品功能满意程度的评分服从正态分布,对产品外观满意程度评分的频率分布直方图如图所示,规定评分90分以上(不含90分)视为非常满意.

   

(1)本次调查对产品功能非常满意和对产品外观非常满意的各有多少人?(结果四舍五入取整数)
(2)若这250人中对两项都非常满意的有2人,现从对产品功能非常满意和对产品外观非常满意的人中随机抽取3人,设3人中两项都非常满意的有X人,求X的分布列和数学期望. (附:若,则
2024-03-19更新 | 716次组卷 | 7卷引用:8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
共计 平均难度:一般