组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 130 道试题
1 . 某人骑自行车上班,第一条路线较短但拥挤,到达时间(分钟)服从正态分布;第二条路线较长不拥挤,服从.若有一天他出发时离点名时间还有7分钟,问他应选哪一条路线?若离点名时间还有6.5分钟,问他应选哪一条路线?
2024-08-11更新 | 20次组卷 | 1卷引用:【课后练 】3.3 正态分布 课后作业-湘教版(2019)选择性必修第二册 第3章 概率
2 . 某企业的产品正常生产时,产品尺寸(单位:)服从正态分布,从当前生产线上随机抽取400件产品进行检测,产品尺寸汇总如表
产品尺寸/
件数85454160724012
根据产品质量标准和生产线的实际情况,产品尺寸在以外视为小概率事件,一旦小概率事件发生视为生产线出现异常,产品尺寸在以内为正品,以外为次品.
(1)判断生产线是否正常工作,并说明理由;
(2)用频率表示概率,若再随机从生产线上取3件产品复检,正品检测费为20元/件,次品检测费为30元/件,记这3件产品检测费为随机变量X,求X的均值及方差.
附:.
2024-08-09更新 | 59次组卷 | 1卷引用:【课后练】 3.3 正态分布 课后作业-湘教版(2019)选择性必修第二册 第3章 概率
3 . (多选)假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布(单位:g),生产线乙正常情况下生产出来的包装食盐质量为,随机变量x的概率分布密度函数为,其中,则(       
附:随机变量,则.
A.正常情况下,从生产线甲任意抽取一包食盐,质量小于的概率为0.135%
B.生产线乙的食盐质量
C.曲线的峰值为
D.生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于,于是判断出该生产线出现异常,该判断是合理的
2024-08-09更新 | 68次组卷 | 1卷引用:【课后练】 3.3 正态分布 课后作业-湘教版(2019)选择性必修第二册 第3章 概率
4 . “南澳牡蛎”是我国地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.2024年该基地考虑增加人工投入,现有以往的人工投入增量x(人)与年收益增量y(万元)的数据如下:
人工投入增量x(人)234681013
年收益增量y(万元)13223142505658
该基地为了预测人工投入增量为16人时的年收益增量,建立了yx的两个回归模型:
模型①:由最小二乘公式可求得yx的线性回归方程:
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量x做变换,令,则,且有.

(1)(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的决定系数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
回归模型模型①模型②
回归方程
182.479.2
(2)根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布.购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?
附:若随机变量,则
样本的最小二乘估计公式为:.
2024-06-17更新 | 1026次组卷 | 8卷引用:河北省沧州市2024届高三下学期6月保温考试数学试卷
智能选题,一键自动生成优质试卷~
5 . 某企业使用新技术对某款芯片制造工艺进行改进.部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记表示事件“某芯片通过智能检测系统筛选”,表示事件“某芯片经人工抽检后合格”.改进生产工艺后,该款芯片的某项质量指标服从正态分布,现从中随机抽取个,这个芯片中恰有个的质量指标位于区间,则下列说法正确的是(       )(若
A.
B.
C.
D.取得最大值时,的估计值为53
2024-05-17更新 | 1576次组卷 | 12卷引用:湖南省长沙市第一中学2023-2024学年高三下学期2月开学考试数学试卷
6 . 已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.
(1)求该机器生产的零件为不合格品的概率;
(2)从该机器生产的零件中随机抽取n)件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取
2024-03-22更新 | 3403次组卷 | 6卷引用:7.5正态分布 第三课 知识扩展延伸
7 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查居民对两会相关知识的了解情况,某小区开展了两会知识问答活动,现将该小区参与该活动的240位居民的得分(满分100分)进行了统计,得到如下的频率分布直方图.

   

(1)若此次知识问答的得分X服从,其中近似为参与本次活动的240位居民的平均得分(同一组中的数据用该组区间的中点值代表),求的值;
(2)中国移动为支持本次活动提供了大力支持,制定了如下奖励方案:参与本次活动得分低于的居民获得一次抽奖机会,参与本次活动得分不低于的居民获得两次抽奖机会,每位居民每次有的机会抽中一张10元的话费充值卡,有的机会抽中一张20元的话费充值卡,假设每次抽奖相互独立,假设该小区居民王先生参与本次活动,求王先生获得的话费充值卡的总金额Y(单位:元)的概率分布列,并估计本次活动中国移动需要准备的话费充值卡的总金额(单位:元)
参考数据:.
2024-03-17更新 | 853次组卷 | 6卷引用:吉林省长春市绿园区长春市文理高中2023-2024学年高二下学期4月月考数学试题
8 . 某商场将在“周年庆”期间举行“购物刮刮乐,龙腾旺旺来”活动,活动规则:顾客投掷3枚质地均匀的股子.若3枚骰子的点数都是奇数,则中“龙腾奖”,获得两张“刮刮乐”;若3枚骰子的点数之和为6的倍数,则中“旺旺奖”,获得一张“刮刮乐”;其他情况不获得“刮刮乐”.
(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额内的人数;
附:若,则
(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为
①求顾客获得乙奖品的概率;
②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.
2024-03-12更新 | 1893次组卷 | 5卷引用:7.5正态分布 第三练 能力提升拔高
9 . 某市为提升中学生的环境保护意识,举办了一次“环境保护知识竞赛”,分预赛和复赛两个环节,预赛成绩排名前三百名的学生参加复赛.已知共有12000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到频率分布直方图如图:

   

(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求至少有1人预赛成绩优良的概率,并求预赛成绩优良的人数X的分布列及数学期望;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布,其中可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且,已知小明的预赛成绩为91分,利用该正态分布,估计小明是否有资格参加复赛?
附:若,则
2024-02-17更新 | 2425次组卷 | 10卷引用:陕西省西安市2024年高三第一次质量检测理科数学试题
10 . 某制造商生产的5000根金属棒的长度近似服从正态分布,其中恰有114根金属棒长度不小于6.04.
(1)求
(2)如果允许制造商生产这种金属棒的长度范围是(5.95,6.05),那么这批金属棒中不合格的金属棒约有多少根?
说明:对任何一个正态分布来说,通过转化为标准正态分布,从而查标准正态分布表得到
可供查阅的(部分)标准正态分布表

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.8643

0.8849

0.9032

0.9192

0.9332

0.9452

0.9554

0.9641

0.9713

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0.9772

0.9821

0.9861

0.9893

0.9918

0.9938

0.9953

0.9965

0.9974

2024-02-12更新 | 440次组卷 | 4卷引用:专题12随机变量及其分布 (十六大题型+过关检测专训)(2)
共计 平均难度:一般