解题方法
1 . 某人骑自行车上班,第一条路线较短但拥挤,到达时间(分钟)服从正态分布;第二条路线较长不拥挤,服从.若有一天他出发时离点名时间还有7分钟,问他应选哪一条路线?若离点名时间还有6.5分钟,问他应选哪一条路线?
您最近一年使用:0次
2 . 某企业的产品正常生产时,产品尺寸(单位:)服从正态分布,从当前生产线上随机抽取400件产品进行检测,产品尺寸汇总如表
根据产品质量标准和生产线的实际情况,产品尺寸在以外视为小概率事件,一旦小概率事件发生视为生产线出现异常,产品尺寸在以内为正品,以外为次品.
(1)判断生产线是否正常工作,并说明理由;
(2)用频率表示概率,若再随机从生产线上取3件产品复检,正品检测费为20元/件,次品检测费为30元/件,记这3件产品检测费为随机变量X,求X的均值及方差.
附:.
产品尺寸/ | |||||||
件数 | 8 | 54 | 54 | 160 | 72 | 40 | 12 |
(1)判断生产线是否正常工作,并说明理由;
(2)用频率表示概率,若再随机从生产线上取3件产品复检,正品检测费为20元/件,次品检测费为30元/件,记这3件产品检测费为随机变量X,求X的均值及方差.
附:.
您最近一年使用:0次
3 . (多选)假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布(单位:g),生产线乙正常情况下生产出来的包装食盐质量为,随机变量x的概率分布密度函数为,其中,则( )
附:随机变量,则,.
附:随机变量,则,.
A.正常情况下,从生产线甲任意抽取一包食盐,质量小于的概率为0.135% |
B.生产线乙的食盐质量 |
C.曲线的峰值为 |
D.生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于,于是判断出该生产线出现异常,该判断是合理的 |
您最近一年使用:0次
名校
4 . “南澳牡蛎”是我国地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.2024年该基地考虑增加人工投入,现有以往的人工投入增量x(人)与年收益增量y(万元)的数据如下:
该基地为了预测人工投入增量为16人时的年收益增量,建立了y与x的两个回归模型:
模型①:由最小二乘公式可求得y与x的线性回归方程:;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量x做变换,令,则,且有,,,.(1)(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的决定系数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
(2)根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布.购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?
附:若随机变量,则,;
样本的最小二乘估计公式为:,,.
人工投入增量x(人) | 2 | 3 | 4 | 6 | 8 | 10 | 13 |
年收益增量y(万元) | 13 | 22 | 31 | 42 | 50 | 56 | 58 |
模型①:由最小二乘公式可求得y与x的线性回归方程:;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量x做变换,令,则,且有,,,.(1)(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的决定系数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
回归模型 | 模型① | 模型② |
回归方程 | ||
182.4 | 79.2 |
附:若随机变量,则,;
样本的最小二乘估计公式为:,,.
您最近一年使用:0次
2024-06-17更新
|
1026次组卷
|
8卷引用:河北省沧州市2024届高三下学期6月保温考试数学试卷
河北省沧州市2024届高三下学期6月保温考试数学试卷(已下线)第1套 期末全真模拟卷(高二期末较难卷)(已下线)专题6 回归分析与独立性检验复杂问题【练】(高二期末压轴专项)四川省广元市川师大万达中学2023-2024学年高二下学期6月月考数学试题(已下线)7.4 常见的几种分布列四川省自贡市荣县中学校2023-2024学年高二下学期5月月考数学试题(已下线)第四章 统计 专题四 相关分析与回归分析 微点3 相关分析与回归分析(三)【基础版】(已下线)第五章 概率统计创新问题 专题五 概率统计中的开放题 微点1 概率统计中的开放题(一)【培优版】
名校
5 . 某企业使用新技术对某款芯片制造工艺进行改进.部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记表示事件“某芯片通过智能检测系统筛选”,表示事件“某芯片经人工抽检后合格”.改进生产工艺后,该款芯片的某项质量指标服从正态分布,现从中随机抽取个,这个芯片中恰有个的质量指标位于区间,则下列说法正确的是( )(若,)
A. |
B. |
C. |
D.取得最大值时,的估计值为53 |
您最近一年使用:0次
2024-05-17更新
|
1576次组卷
|
12卷引用:湖南省长沙市第一中学2023-2024学年高三下学期2月开学考试数学试卷
湖南省长沙市第一中学2023-2024学年高三下学期2月开学考试数学试卷(已下线)7.5 正态分布(分层练习,8大题型)-2023-2024学年高二数学同步精品课堂(人教A版2019选择性必修第三册)(已下线)专题09 计数原理与随机变量及分布列(讲义)重庆市乌江新高考协作体2023-2024学年高二下学期第一阶段学业质量联合调研抽测(4月)数学试题单元测试B卷——第七章 随机变量及其分布重庆市涪陵第五中学校2024届高三下学期第二次适应性考试数学试题(已下线)暑假作业08 二项分布、超几何分布及正态分布-【暑假分层作业】(人教A版2019)安徽省合肥市第一中学瑶海校区2023-2024学年高二下学期数学素质拓展训练(五)(已下线)第8章 概率单元综合能力测试卷-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)江苏省决胜新高考2024届高三下学期4月大联考数学试题江苏省常州市金坛第四中学2024届高三考前适应性考试(三模)数学试题江苏省如东县、宿迁一中、沭阳如东中学2023-2024学年高三下学期期中学情检测数学试题
名校
解题方法
6 . 已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.
(1)求该机器生产的零件为不合格品的概率;
(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取,.
(1)求该机器生产的零件为不合格品的概率;
(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取,.
您最近一年使用:0次
2024-03-22更新
|
3403次组卷
|
6卷引用:7.5正态分布 第三课 知识扩展延伸
(已下线)7.5正态分布 第三课 知识扩展延伸(已下线)专题3.4正态分布(五个重难点突破)-2023-2024学年高二数学下学期重难点突破及混淆易错规避(人教A版2019)陕西省西安市陕西师范大学附属中学2023-2024学年高二下学期期中考试数学试卷江苏省南京市、盐城市2024届高三第一次模拟考试数学试题(已下线)数学(广东专用01,新题型结构)(已下线)专题06 离散型随机变量与正态分布--高二期末考点大串讲(苏教版2019选择性必修第二册)
2024高三下·江苏·专题练习
7 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查居民对两会相关知识的了解情况,某小区开展了两会知识问答活动,现将该小区参与该活动的240位居民的得分(满分100分)进行了统计,得到如下的频率分布直方图.
(2)中国移动为支持本次活动提供了大力支持,制定了如下奖励方案:参与本次活动得分低于的居民获得一次抽奖机会,参与本次活动得分不低于的居民获得两次抽奖机会,每位居民每次有的机会抽中一张10元的话费充值卡,有的机会抽中一张20元的话费充值卡,假设每次抽奖相互独立,假设该小区居民王先生参与本次活动,求王先生获得的话费充值卡的总金额Y(单位:元)的概率分布列,并估计本次活动中国移动需要准备的话费充值卡的总金额(单位:元)
参考数据:,,.
(1)若此次知识问答的得分X服从,其中近似为参与本次活动的240位居民的平均得分(同一组中的数据用该组区间的中点值代表),求的值;
(2)中国移动为支持本次活动提供了大力支持,制定了如下奖励方案:参与本次活动得分低于的居民获得一次抽奖机会,参与本次活动得分不低于的居民获得两次抽奖机会,每位居民每次有的机会抽中一张10元的话费充值卡,有的机会抽中一张20元的话费充值卡,假设每次抽奖相互独立,假设该小区居民王先生参与本次活动,求王先生获得的话费充值卡的总金额Y(单位:元)的概率分布列,并估计本次活动中国移动需要准备的话费充值卡的总金额(单位:元)
参考数据:,,.
您最近一年使用:0次
2024-03-17更新
|
853次组卷
|
6卷引用:吉林省长春市绿园区长春市文理高中2023-2024学年高二下学期4月月考数学试题
吉林省长春市绿园区长春市文理高中2023-2024学年高二下学期4月月考数学试题(已下线)专题3.4正态分布(五个重难点突破)-2023-2024学年高二数学下学期重难点突破及混淆易错规避(人教A版2019)四川省眉山市仁寿县两校2024届高三下学期第三次模拟理科数学试题(已下线)第七章:随机变量及其分布章末重点题型复习-2023-2024学年高二数学题型分类归纳讲与练(人教A版2019选择性必修第三册)(已下线)专题11 统计与概率(分层练)(已下线)8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
名校
解题方法
8 . 某商场将在“周年庆”期间举行“购物刮刮乐,龙腾旺旺来”活动,活动规则:顾客投掷3枚质地均匀的股子.若3枚骰子的点数都是奇数,则中“龙腾奖”,获得两张“刮刮乐”;若3枚骰子的点数之和为6的倍数,则中“旺旺奖”,获得一张“刮刮乐”;其他情况不获得“刮刮乐”.
(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额在内的人数;
附:若,则.
(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为.
①求顾客获得乙奖品的概率;
②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.
(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额在内的人数;
附:若,则.
(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为.
①求顾客获得乙奖品的概率;
②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.
您最近一年使用:0次
2024-03-12更新
|
1893次组卷
|
5卷引用:7.5正态分布 第三练 能力提升拔高
(已下线)7.5正态分布 第三练 能力提升拔高福建省福州市八县(市、区)协作校2023-2024学年高二下学期期中联考数学试题(已下线)高二下学期第三次月考(范围:选择性必修二、三)-2023-2024学年高二数学下学期重难点突破及混淆易错规避(人教A版2019)福建省莆田市2024届高三毕业班第二次教学质量检测数学试卷(已下线)8.3 正态分布(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
名校
9 . 某市为提升中学生的环境保护意识,举办了一次“环境保护知识竞赛”,分预赛和复赛两个环节,预赛成绩排名前三百名的学生参加复赛.已知共有12000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到频率分布直方图如图:
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布,其中可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且,已知小明的预赛成绩为91分,利用该正态分布,估计小明是否有资格参加复赛?
附:若,则,,;.
(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求至少有1人预赛成绩优良的概率,并求预赛成绩优良的人数X的分布列及数学期望;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布,其中可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且,已知小明的预赛成绩为91分,利用该正态分布,估计小明是否有资格参加复赛?
附:若,则,,;.
您最近一年使用:0次
2024-02-17更新
|
2425次组卷
|
10卷引用:陕西省西安市2024年高三第一次质量检测理科数学试题
陕西省西安市2024年高三第一次质量检测理科数学试题(已下线)7.5 正态分布(分层练习,8大题型)-2023-2024学年高二数学同步精品课堂(人教A版2019选择性必修第三册)(已下线)第七章 随机变量及其分布(知识归纳+题型突破)-2023-2024学年高二数学单元速记·巧练(人教A版2019选择性必修第三册)(已下线)第四套 最新模拟重组卷(已下线)专题8-2分布列综合归类-1(已下线)7.5 正态分布——课后作业(基础版)陕西省西安高新第一中学2025届高三上学期开学考试数学试题四川省绵竹中学2024-2025学年高三上学期开学考试数学试题广东省2024届高三新改革数学适应性训练六(九省联考题型)江西省宜春市丰城中学2025届高三上学期开学考试数学试题
10 . 某制造商生产的5000根金属棒的长度近似服从正态分布,其中恰有114根金属棒长度不小于6.04.
(1)求;
(2)如果允许制造商生产这种金属棒的长度范围是(5.95,6.05),那么这批金属棒中不合格的金属棒约有多少根?
说明:对任何一个正态分布来说,通过转化为标准正态分布,从而查标准正态分布表得到.
可供查阅的(部分)标准正态分布表
(1)求;
(2)如果允许制造商生产这种金属棒的长度范围是(5.95,6.05),那么这批金属棒中不合格的金属棒约有多少根?
说明:对任何一个正态分布来说,通过转化为标准正态分布,从而查标准正态分布表得到.
可供查阅的(部分)标准正态分布表
1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | |
0.8643 | 0.8849 | 0.9032 | 0.9192 | 0.9332 | 0.9452 | 0.9554 | 0.9641 | 0.9713 | |
2.0 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | |
0.9772 | 0.9821 | 0.9861 | 0.9893 | 0.9918 | 0.9938 | 0.9953 | 0.9965 | 0.9974 |
您最近一年使用:0次