组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 7 道试题
1 . 已知等比数列的前项和为.数列的前项和为,且
(1)分别求数列的通项公式;
(2)若为数列的前项和,是否存在不同的正整数(其中成等差数列),使得成等比数列?若存在,求出所有满足条件的的值;若不存在,说明理由.
2021-01-31更新 | 561次组卷 | 5卷引用:专题09 《数列》中的存在性问题-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)
20-21高二下·江西萍乡·期中
解答题-证明题 | 较易(0.85) |
2 . (1)已知.求证:
(2)在中,内角的对边分别为.若,用反证法证明:.
2021-04-30更新 | 287次组卷 | 4卷引用:专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)
3 . 已知函数.
(1)若,且在区间恒成立,求的取值范围;
(2)当时,求证:在区间至少存在一个,使得.
2021-10-22更新 | 231次组卷 | 1卷引用:江苏省苏州市相城区陆慕高级中学2021-2022学年高一上学期第一次月考数学试题
20-21高二下·江西萍乡·期中
解答题-问答题 | 适中(0.65) |
4 . (1)三内角成等差数列,对边分别为.证明:.
(2)已知二次函数的图象与轴有两个不同的交点,,当时,.用反证法证明:.
2021-04-30更新 | 224次组卷 | 4卷引用:专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)
智能选题,一键自动生成优质试卷~
5 . 列三角形数表

假设第行的第二个数为
(1)归纳出的关系式并求出的通项公式;
(2)求证:数列中任意的连续三项不可能构成等差数列.
6 . 已知,关于的方程.(是虚数单位)
(1)若方程有实数根,求实数
(2)证明:方程无纯虚数根.
2021-08-31更新 | 181次组卷 | 1卷引用:江苏省泰州中学2020-2021学年高二下学期期中数学试题
20-21高一·江苏·课后作业
解答题-问答题 | 较易(0.85) |
7 . 判断并证明下列命题的真假.
(1)如果一个整数n的平方是偶数,那么这个整数n本身也是偶数;
(2)不存在实数k,使二次函数ykx2+3x-1的图象与x轴只有一个交点.
2021-10-30更新 | 110次组卷 | 1卷引用:2.1 命题、定理、定义
共计 平均难度:一般