解题方法
1 . 已知等比数列的前项和为,,.数列的前项和为,且,.
(1)分别求数列和的通项公式;
(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由.
(1)分别求数列和的通项公式;
(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由.
您最近一年使用:0次
2021-01-31更新
|
561次组卷
|
5卷引用:专题09 《数列》中的存在性问题-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)
(已下线)专题09 《数列》中的存在性问题-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)山东省烟台市2020-2021学年高二上学期期末数学试题江西省新余市2021-2022学年高二上学期期末数学(理)试题2023版 湘教版(2019) 选修第一册 过关斩将 第1章 综合拔高练(已下线)广东省2022届高三一模数学试题变式题17-22
2 . (1)已知,.求证:;
(2)在中,内角的对边分别为.若,用反证法证明:.
(2)在中,内角的对边分别为.若,用反证法证明:.
您最近一年使用:0次
2021-04-30更新
|
287次组卷
|
4卷引用:专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)
(已下线)专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)(已下线)江西省萍乡市2020—2021学年度第二学期期中考试数学(理)试题(已下线)2.2.2 间接证明(基础练)-2020-2021学年高二数学(理)十分钟同步课堂专练(人教A版选修2-2)(已下线)2.2.2 间接证明(基础练)-2020-2021学年高二数学(文)十分钟同步课堂专练(人教A版选修1-2)
名校
解题方法
3 . 已知函数.
(1)若,且在区间恒成立,求的取值范围;
(2)当,时,求证:在区间至少存在一个,使得.
(1)若,且在区间恒成立,求的取值范围;
(2)当,时,求证:在区间至少存在一个,使得.
您最近一年使用:0次
4 . (1)三内角成等差数列,对边分别为.证明:.
(2)已知二次函数的图象与轴有两个不同的交点,,当时,.用反证法证明:.
(2)已知二次函数的图象与轴有两个不同的交点,,当时,.用反证法证明:.
您最近一年使用:0次
2021-04-30更新
|
224次组卷
|
4卷引用:专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)
(已下线)专题02 推理与证明-2020-2021学年高二数学下学期期末专项复习(苏教版选修2-2、2-3)(已下线)江西省萍乡市2020—2021学年度第二学期期中考试数学(文)试题(已下线)2.2.2 间接证明(重点练)-2020-2021学年高二数学(理)十分钟同步课堂专练(人教A版选修2-2)(已下线)2.2.2 间接证明(重点练)-2020-2021学年高二数学(文)十分钟同步课堂专练(人教A版选修1-2)
5 . 列三角形数表
假设第行的第二个数为
(1)归纳出与的关系式并求出的通项公式;
(2)求证:数列中任意的连续三项不可能构成等差数列.
假设第行的第二个数为
(1)归纳出与的关系式并求出的通项公式;
(2)求证:数列中任意的连续三项不可能构成等差数列.
您最近一年使用:0次
2021-08-02更新
|
187次组卷
|
2卷引用:江苏省苏州市常熟中学2021-2022学年高二上学期10月阶段学习质量检测数学试题
名校
解题方法
6 . 已知,关于的方程.(是虚数单位)
(1)若方程有实数根,求实数;
(2)证明:方程无纯虚数根.
(1)若方程有实数根,求实数;
(2)证明:方程无纯虚数根.
您最近一年使用:0次