组卷网 > 知识点选题 > 数系的扩充与复数的概念
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 9 道试题
1 . 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受.形如的数称为复数,其中称为实部,称为虚部,i称为虚数单位,.当时,为实数;当且时,为纯虚数.其中,叫做复数的模.设如图,点,复数可用点表示,这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应,反过来,复平面内的每一个点,有唯一的一个复数和它对应.一般地,任何一个复数都可以表示成的形式,即,其中为复数的模,叫做复数的辐角,我们规定范围内的辐角的值为辐角的主值,记作.叫做复数的三角形式.

   

(1)设复数,求的三角形式;
(2)设复数,其中,求
(3)在中,已知为三个内角的对应边.借助平面直角坐标系及阅读材料中所给复数相关内容,证明:

.
注意:使用复数以外的方法证明不给分.
2024-03-12更新 | 580次组卷 | 4卷引用:黑龙江省哈尔滨师范大学附属中学2023-2024学年高一下学期开学考试数学试卷
2 . 对于无穷数列,我们称(规定)为无穷数列的指数型母函数.无穷数列1,1,…,1,…的指数型母函数记为,它具有性质
(1)证明:
(2)记.证明:(其中i为虚数单位);
(3)以函数为指数型母函数生成数列.其中称为伯努利数.证明:.且
2024-03-03更新 | 555次组卷 | 3卷引用:压轴题06向量、复数压轴题16题型汇总-2
3 . 通过平面直角坐标系,我们可以用有序实数对表示向量.类似的,我们可以把有序复数对看作一个向量,记,则称为复向量.类比平面向量的相关运算法则,对于,我们有如下运算法则:
       
             .
(1)设,求.
(2)由平面向量的数量积满足的运算律,我们类比得到复向量的相关结论:

       .
试判断这三个结论是否正确,并对正确的结论予以证明.
(3)若,集合.对于任意的,求出满足条件,并将此时的记为,证明对任意的,不等式恒成立.
根据对上述问题的解答过程,试写出一个一般性的命题(不需要证明).
2023-07-06更新 | 543次组卷 | 7卷引用:上海市闵行区2022-2023学年高一下学期期末数学试题
4 . 利用平面向量的坐标表示,可以把平面向量的概念推广为坐标为复数的“复向量”,即可将有序复数对(其中)视为一个向量,记作.类比平面向量可以定义其运算,两个复向量的数量积定义为一个复数,记作,满足,复向量的模定义为
(1)设为虚数单位,求复向量的模;
(2)设是两个复向量,
①已知对于任意两个平面向量,(其中),成立,证明:对于复向量也成立;
②当时,称复向量平行.若复向量平行(其中为虚数单位,),求复数
2023-07-04更新 | 817次组卷 | 14卷引用:上海市上海中学2022-2023学年高一下学期期末数学试题
智能选题,一键自动生成优质试卷~
5 . 利用平面向量的坐标表示,可以把平面向量的概念推广为坐标为复数的“复向量”,即可将有序复数对视为一个向量,记作.类比平面向量可以定义其运算,两个复向量的数量积定义为一个复数,记作,满足,复向量的模定义为
(1)设,求复向量的模;
(2)设是两个复向量,证明柯西一布涅科夫斯基不等式仍成立,即:
(3)当时,称复向量平行.设,若复向量平行,求复数的值.
2021-07-12更新 | 1266次组卷 | 9卷引用:上海交通大学附属中学2020-2021学年高一下学期期末数学试题
2021高三·全国·专题练习
6 . 设复平面上点,…,,…分别对应复数,…,,…
(1)设,(),用数学归纳法证明:
(2)已知,且为实常数),求出数列的通项公式;
(3)在(2)的条件下,求.
2021-03-20更新 | 469次组卷 | 1卷引用:专题12 复数-【备战高考】2021年高三数学高考复习刷题宝典(压轴题专练)
7 . 求证:
(1)
(2)
(3)
(4).
2020-01-30更新 | 1267次组卷 | 6卷引用:人教B版(2019) 必修第四册 逆袭之路 第十章 10.2.2 复数的乘法与除法
2019高二下·全国·专题练习
解答题-证明题 | 较难(0.4) |
名校
8 . 关于复数z的方程z2-(a+i)z-(i+2)=0(aR).
(1)若此方程有实数解,求a的值;
(2)用反证法证明:对任意的实数a,原方程不可能有纯虚数根.
2019-03-25更新 | 744次组卷 | 2卷引用:2019年3月30日 《每日一题》理数选修2-2-周末培优
9 . 已知是虚数, 是实数.
(1)求为何值时, 有最小值,并求出|的最小值;
(2)设,求证: 为纯虚数.
2017-05-21更新 | 2183次组卷 | 4卷引用:安徽省定远重点中学2017-2018学年高二下学期教学段考数学(理)试题
共计 平均难度:一般