组卷网 > 知识点选题 > 用料最省问题
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 用铁皮围成一个容积为的无盖正四棱柱形水箱,需用铁皮的面积至少为_____.(注:铁皮厚度不计,接缝处损耗不计)
2021-08-06更新 | 458次组卷 | 3卷引用:北京市西城区2020-2021学年高二下学期期末数学试题
2 . 易拉罐用料最省问题的研究.小明同学最近注意到一条新闻,易拉罐(如图所示)作为饮品的容器,每年的用量可达数万亿个.这让他想到一个用料最优化的问题,即在易拉罐的体积一定的情况下,如何确定易拉罐的高和半径才能使得用料最省?他研究发现易拉罐的上盖、下底和侧壁的厚度是不同的,进而结合数学建模知识进行了深入研究.以下是小明的研究过程,请你补全缺失的部分.

以下是小明的研究过程,请你补全缺失的部分.
(1)模型假设:
①易拉罐近似看成圆柱体;
②上盖、下底、侧壁的厚度处处均匀;
③上盖、下底、侧壁所用金属相同;
④易拉罐接口处的所用材料忽略不计.
(2)建立模型
记圆柱体积为,高为,底面半径为,上盖、下底和侧壁的厚度分别为
金属用料总量为C
由几何知识得到如下数量关系:

由①得,代入②整理得:
因为都是常数,不妨设
则用料总量的函数简化为
请写出表格中代入整理这一步的目的是:___________________________.
(3)求解模型:
所以,在___________(用表示)时,取得最小值,即在此种情况下用料最省.
(4)检验模型:
小明上网查阅到目前330毫升可乐易拉罐的数据,得知,代入(3)的模型结果,经计算得经验算,确认计算无误,但是这与实际罐体半径差异较大.实际上,在经济利益驱动之下,目前的罐体成本应该已经达最优.
(5)模型评价与改进:
模型计算结果与现实数据存在较大差异的原因可能为:_________________________________________________________________________________________________.
相应改进措施为:_________________________________________________________________________________________________________________________________.
2021-08-14更新 | 386次组卷 | 2卷引用:北京市海淀区2020-2021学年高二下学期数学期中试题
3 . 某景区准备设计一景观,其上部是圆锥形的顶棚,如图所示.圆锥顶点为B,底面圆心为O,半径为2米.通过金属杆AB支撑在地面A处(AB垂直于地面),,…,支撑着顶棚,,…,是底面圆周上的n等分点,圆锥顶点距地面10米,设金属杆,…,所在直线与圆锥底面所成的角都为(金属杆不计粗细).

(1)当为60°且n=3时,求AO的总长.
(2)当n一定,变化时,为美观与安全起见,要求AO,…,的总长最短,此时的正弦值是多少?并由此说明n越大,O点的位置将会上移还是下移.
2022-03-02更新 | 154次组卷 | 1卷引用:山东省日照市2021-2022学年高三上学期12月校际联合考试数学试题
共计 平均难度:一般