1 . 四棱锥中,底面是边长为2的菱形,.,且平面,,点分别是线段上的中点,在上.且.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面的成角的正弦值;
(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面的成角的正弦值;
(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.
您最近一年使用:0次
2018-06-16更新
|
1431次组卷
|
7卷引用:【全国百强校】北京市十一学校2018届高三三模数学(文理)试题
【全国百强校】北京市十一学校2018届高三三模数学(文理)试题北京市十一学校2024届高三下学期三模数学试题(已下线)专题24 立体几何解答题最全归纳总结-2(已下线)专题08 立体几何解答题常考全归类(精讲精练)-1(已下线)重难点突破06 立体几何解答题最全归纳总结(九大题型)-2(已下线)专题15 立体几何解答题全归类(练习)(已下线)重难点突破03 立体几何解答题常考模型归纳总结(九大题型)-1
名校
解题方法
2 . 如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,,,且.
(1)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明;
(2)求直线与平面所成角的正弦值.
(1)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明;
(2)求直线与平面所成角的正弦值.
您最近一年使用:0次
2023-06-15更新
|
713次组卷
|
9卷引用:广西桂林市桂林中学2017届高三5月全程模拟考试数学(理)试题
广西桂林市桂林中学2017届高三5月全程模拟考试数学(理)试题山西省太原市第五中学2017届高三第二次模拟考试(5月) 数学(理)试题辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中)数学(理)试题天津市实验中学2018届高三上学期第二次模拟数学(理)试题江西省临川二中、新余四中2018届高三1月联合考试数学(理)试题安徽省舒城中学2023届高三仿真模拟卷(三)数学试题(已下线)重难点突破06 立体几何解答题最全归纳总结(九大题型)-2(已下线)专题15 立体几何解答题全归类(9大核心考点)(讲义)-1(已下线)重难点12 立体几何必考经典解答题全归类【九大题型】
名校
解题方法
3 . 如图,组合体由半个圆锥和一个三棱锥构成,其中是圆锥底面圆心,是圆弧上一点,满足是锐角,.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明;
(2)在(1)中,若是中点,且,求直线与平面所成角的正弦值.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明;
(2)在(1)中,若是中点,且,求直线与平面所成角的正弦值.
您最近一年使用:0次
2020-08-05更新
|
210次组卷
|
4卷引用:福建省福州第一中学2020届高三6月高考模拟考试数学(理)试题
福建省福州第一中学2020届高三6月高考模拟考试数学(理)试题福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题(已下线)专题04 立体几何——2020年高考真题和模拟题理科数学分项汇编(已下线)考点41 立体几何的向量方法-空间角问题(考点专练)-备战2021年新高考数学一轮复习考点微专题
19-20高二下·上海浦东新·阶段练习
名校
解题方法
4 . 正四棱锥的底面正方形边长是3,是在底面上的射影,,是上的一点,过且与、都平行的截面为五边形.
(1)在图中作出截面,并写出作图过程;
(2)求该截面面积的最大值.
(1)在图中作出截面,并写出作图过程;
(2)求该截面面积的最大值.
您最近一年使用:0次
2020-05-04更新
|
1372次组卷
|
6卷引用:2020届上海市高三高考压轴卷数学试题
2020届上海市高三高考压轴卷数学试题(已下线)上海市华东师范大学第二附属中学2019-2020学年高二下学期(4月)月考数学试题(已下线)重难点05 空间向量与立体几何-2021年高考数学【热点·重点·难点】专练(上海专用)(已下线)专题5.8 期末考前选做30题(解答题压轴版)-2020-2021学年高二数学下学期期末专项复习(沪教版)(已下线)第09讲 空间几何体的结构与直观图(核心考点讲与练)(1)(已下线)第四章 立体几何解题通法 专题一 降维法 微点1 降维法(一)【基础版】
名校
解题方法
5 . 如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为( )
A. | B. | C. | D. |
您最近一年使用:0次
2020-02-15更新
|
624次组卷
|
5卷引用:2020届安徽省芜湖市高三上学期期末数学(文)试题
2020届安徽省芜湖市高三上学期期末数学(文)试题陕西省咸阳市武功县普集高级中学2023届高三5月模考(三)数学(文)试题陕西省咸阳市武功县普集高级中学2023届高三5月模拟预测理科数学试题(已下线)专题4.2 与球相关的外接与内切问题-玩转压轴题,进军满分之2021高考数学选择题填空题(已下线)专题25 欧几里得
6 . 如图,在直三棱柱中,底面为等腰直角三角形,,,为的中点,为的三等分点(靠近)点.
(1)求三棱锥的体积;
(2)在线段上找点,使得平面,写出作图步骤,但不要求证明.
(1)求三棱锥的体积;
(2)在线段上找点,使得平面,写出作图步骤,但不要求证明.
您最近一年使用:0次
解题方法
7 . 在四棱锥中,平面,且底面为边长为2的菱形,,.
(1)记在平面内的射影为(即平面),试用作图的方法找出M点位置,并写出的长(要求写出作图过程,并保留作图痕迹,不需证明过程和计算过程);
(2)求二面角的余弦值.
(1)记在平面内的射影为(即平面),试用作图的方法找出M点位置,并写出的长(要求写出作图过程,并保留作图痕迹,不需证明过程和计算过程);
(2)求二面角的余弦值.
您最近一年使用:0次
8 . 如图,已知多面体的底面是边长为2的正方形,底面,,且.
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
您最近一年使用:0次
2017-04-18更新
|
242次组卷
|
3卷引用:2017届山西省三区八校高三第二次模拟考试数学(理)试卷
名校
解题方法
9 . 如图,三棱柱中,,,分别为棱的中点.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明.
(2)若侧面侧面,求直线与平面所成角的正弦值.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明.
(2)若侧面侧面,求直线与平面所成角的正弦值.
您最近一年使用:0次
2017-04-11更新
|
808次组卷
|
5卷引用:2017届福建省高三4月单科质量检测数学理试卷
2017届福建省高三4月单科质量检测数学理试卷江西省新余市第一中学2017届高三高考全真模拟考试数学(理)试题江西省新余市第一中学2017届高三高考全真模拟考试理科数学试题湖北武汉市蔡甸区汉阳一中2017届高三第三次模拟考试数学(理)试题(已下线)重难点突破03 立体几何解答题常考模型归纳总结(九大题型)-2
解题方法
10 . 如图,已知多面体的底面是边长为2的正方形,底面,,且.
(1)求多面体的体积;
(2)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(1)求多面体的体积;
(2)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
您最近一年使用:0次