组卷网 > 知识点选题 > 直线、平面平行的判定与性质
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 423 道试题
2024·全国·模拟预测
1 . 在四棱锥中,已知底面为正方形,平面、平面都与平面垂直,,点分别为的中点,点在棱上,则(       
A.四边形BCTS为等腰梯形
B.不存在点,使得∥平面
C.存在点,使得
D.点两点的距离和的最小值为
2024-05-07更新 | 75次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学押题卷(四)
2 . 在四棱锥中,底面为正方形,平面都与平面垂直,,点分别为的中点,且是线段上一点(包含端点),给出下列结论:①四边形为等腰梯形;②不存在点,使得平面;③存在点,使得;④的最小值为.其中所有正确结论的序号为______
2024-05-07更新 | 35次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学文科押题卷(二)
3 . 如图,已知正三棱锥和正三棱锥的侧棱长均为.若将正三棱锥旋转,使得点分别旋转至点处,且四点共面,点分别位于两侧,则下列说法中正确的是(       

   

A.多面体存在外接球B.
C.平面D.点运动所形成的最短轨迹长大于
2024-05-06更新 | 288次组卷 | 1卷引用:2024年新高考Ⅰ卷浙大优学靶向精准模拟数学试题(一)
4 . 在直四棱柱中,底面为平行四边形, 分别为线段的中点.

   

(1)证明:
(2)证明:平面//平面
(3)若,当与平面所成角的正弦值最大时,求四棱锥的体积.
2024-05-05更新 | 530次组卷 | 1卷引用:江苏省无锡市第一中学2023-2024学年高一下学期4月期中考试数学试题

5 . 如图,在棱长为的正方体中,已知分别是棱的中点,点满足,下列说法正确的是       

   

A.平面
B.若四点共面,则
C.若,点在侧面内,且平面,则点的轨迹长度为
D.若,由平面分割该正方体所成的两个空间几何体为,某球能够被整体放入,则该球的表面积最大值为
2024-05-05更新 | 207次组卷 | 1卷引用:福建省晋江二中、奕聪中学、广海中学、泉港五中、马甲中学2023-2024学年高一下学期期中考试数学试题
6 . 在正方体中,的中点,在棱上,且,则过且与垂直的平面截正方体所得截面的面积为(       
A.6B.8C.12D.16
2024-05-04更新 | 604次组卷 | 2卷引用:河南省名校2023-2024学年高三下学期高考模拟4月联考数学试题
7 . 半正多面体亦称“阿基米德体”“阿基米德多面体”,是由边数不全相同的正多边形为面围成的多面体.某半正多面体由6个正方形和8个正六边形构成,其也可由正八面体(由八个等边三角形构成,也可以看作上、下两个正四棱锥黏合而成)切割而成.在如图所示的半正多面体中,若其棱长为1,则下列结论正确的是(       

A.
B.若平面平面,则
C.该半正多面体的体积为
D.该半正多面体的表面积为
8 . 如图,在正方体中,是棱的中点,是侧面上的动点,且平面.设与平面所成的角为所成的角为,那么下列结论正确的是(       

A.的最小值为的最小值为
B.的最小值为的最大值为
C.的最小值大于的最小值大于
D.的最大值小于的最大值小于
2024-04-27更新 | 50次组卷 | 1卷引用:上海市华东师范大学第一附属中学2023-2024学年高二下学期期中考试数学试题
9 . 正三棱柱的底面边长是4,侧棱长是6,分别为的中点,若是侧面上一点,且平面,则线段的最小值为______
2024-04-17更新 | 287次组卷 | 1卷引用:湖南省部分学校2024届高三上学期9月联考数学试卷
10 . 在长方体中,已知,点满足,其中,则(       

A.当时,的周长为定值
B.当时,三棱锥的体积为定值
C.当时,有且仅有一个点使得
D.当时,三棱锥的外接球表面积的最小值为
2024-04-15更新 | 221次组卷 | 1卷引用:云南省三新教研联合体高二第二次联考数学试卷和参考答案
共计 平均难度:一般