组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 32 道试题
1 . 已知抛物线为直线上任意一点,过点作抛物线的两条切线,切点分别为
(1)当的坐标为时,求过三点的圆的方程;
(2)若上的任意点,求证:点处的切线的斜率为
(3)证明:以为直径的圆恒过点
2022-01-14更新 | 705次组卷 | 3卷引用:第05讲 导数的概念及其意义(核心考点讲与练)-2021-2022学年高二数学下学期考试满分全攻略(人教A版2019选修第二册+第三册)
2 . 如图,在圆锥中,高,底面圆的直径的中点,点在圆上,平面平面

(1)证明:
(2)若点是圆上动点,求平面与平面夹角余弦值的取值范围.
2024-10-19更新 | 511次组卷 | 3卷引用:微点6 空间向量与立体几何范围问题【讲】(高二微点进阶)
3 . 已知在平面直角坐标系xOy中,圆C的圆心在直线l上,圆D与直线l相切,,且线段OE为圆C与圆D的公共弦.
(1)分别求圆C与圆D的标准方程;
(2)若直线m与圆C、圆D分别交于异于原点的两点QP,求证:以线段PQ为直径的圆M恒过定点E
2023-10-25更新 | 367次组卷 | 3卷引用:模块二 专题2 解析几何中定值、定点、定直线问题【讲】(高二期中压轴专项)
4 . 如图,在平面直角坐标系中,设点是椭圆C上一点,从原点O向圆作两条切线,分别与椭圆C交于点,直线的斜率分别记为.
   
(1)若圆Mx轴相切于椭圆C的右焦点,求圆M的方程;
(2)若,求证:
(3)在(2)的情况下,求的最大值.
2023-09-12更新 | 1181次组卷 | 6卷引用:专题06 椭圆的压轴题(6类题型+过关检测)-【常考压轴题】2023-2024学年高二数学上学期压轴题攻略(人教A版2019选择性必修第一册)
智能选题,一键自动生成优质试卷~
5 . 已知抛物线C,圆M,圆M上的点到抛物线上的点距离最小值为
(1)求圆M的方程;
(2)设P上一点,P的纵坐标不等于.过点P作圆M的两条切线,分别交抛物线C于两个不同的点和点,求证:为定值.
2023-10-24更新 | 425次组卷 | 2卷引用:专题26 直线与圆锥曲线的位置关系5种常见考法归类 - 【考点通关】2023-2024学年高二数学高频考点与解题策略(人教B版2019选择性必修第一册)
6 . 在平面直角坐标系中,已知圆心在轴上的圆经过点,且被轴截得的弦长为.经过坐标原点的直线与圆交于两点.
(1)求圆的方程;
(2)若点,直线与圆的另一个交点为,直线与圆的另一个交点为,分别记直线、直线的斜率为,求证:为定值.
2023-09-14更新 | 1124次组卷 | 5卷引用:专题16 直线与圆的位置关系8种常见考法归类(3)
7 . 在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线上.
(1)设直线l与圆M交于CD两点,且,求圆M的方程;
(2)设直线与(1)中所求圆M交于EF两点,点P为直线上的动点,直线PEPF与圆M的另一个交点分别为GH,且GH在直线EF两侧,求证:直线GH过定点,并求出定点坐标.
2023-08-17更新 | 905次组卷 | 7卷引用:第二章 直线与圆的方程(压轴题专练)-2023-2024学年高二数学单元速记·巧练(人教A版2019选择性必修第一册)
8 . 已知圆C经过两点,且圆心在直线上,直线l的方程为.
(1)求圆C的方程;
(2)证明:直线l与圆C恒相交.
2023-08-03更新 | 1355次组卷 | 5卷引用:第02讲 2.4圆的方程+2.5直线与圆,圆与圆的位置关系(1)
9 . 已知双曲线上任意一点P(异于顶点)与双曲线两顶点连线的斜率之积为E在双曲线C上,F为双曲线C的右焦点,的最小值为.
(1)求双曲线C的标准方程;
(2)设O为坐标原点,直线l为双曲线C的切线,过F的垂线,垂足为A,求证:A在定圆上.
2023-04-14更新 | 392次组卷 | 2卷引用:专题3-4 双曲线大题综合10种题型归类(讲+练)-【巅峰课堂】2023-2024学年高二数学热点题型归纳与培优练(人教A版2019选择性必修第一册)
10 . 已知圆过点,且圆心在直线上.
(1)求圆的方程;
(2)设点在圆上运动,点,记为过两点的弦的中点,求的轨迹方程;
(3)在(2)的条件下,若直线与直线交于点,证明:恒为定值.
2023-10-01更新 | 1479次组卷 | 6卷引用:难关必刷03圆的综合问题-【满分全攻略】2023-2024学年高二数学同步讲义全优学案(人教A版2019选择性必修第一册)
共计 平均难度:一般