组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 81 道试题
1 . 已知圆过点,且圆心在直线上.是圆外的点,过点的直线交圆两点.
(1)求圆的方程;
(2)若点的坐标为,求证:无论的位置如何变化恒为定值;
(3)对于(2)中的定值,使恒为该定值的点是否唯一?若唯一,请给予证明;若不唯一,写出满足条件的点的集合.
2 . 已知抛物线为直线上任意一点,过点作抛物线的两条切线,切点分别为
(1)当的坐标为时,求过三点的圆的方程;
(2)若上的任意点,求证:点处的切线的斜率为
(3)证明:以为直径的圆恒过点
2022-01-14更新 | 705次组卷 | 3卷引用:第40讲 抛物线的双切线问题-2022年新高考数学二轮专题突破精练
2024高二上·江苏·专题练习
3 . 已知圆C的圆心坐标为,且该圆经过点.

(1)求圆C的标准方程;
(2)直线m交圆CMN两点,若直线AMAN的斜率之和为0,求证:直线m的斜率是定值,并求出该定值.
2024-09-19更新 | 600次组卷 | 1卷引用:专题06 圆中定点定值问题四种考法-【常考压轴题】(苏教版2019选择性必修第一册)

4 . 在平面直角坐标系中,已知圆心在轴上的圆经过点,且被轴截得的弦长为.经过坐标原点的直线与圆交于两点.


(1)求圆的方程;
(2)求当满足时对应的直线的方程;
(3)若点,直线与圆的另一个交点为,直线与圆的另一个交点为,分别记直线、直线的斜率为,求证:为定值.
2023-11-30更新 | 540次组卷 | 6卷引用:专题04 圆锥曲线经典题型全归纳(2)
智能选题,一键自动生成优质试卷~
5 . 圆经过点,圆心在直线上.
(1)求圆的标准方程;
(2)若圆轴分别交于两点,为直线上的动点,直线与曲线圆的另一个交点分别为,求证直线经过定点,并求出定点的坐标.
2024-01-03更新 | 703次组卷 | 2卷引用:圆的方程-一轮复习考点专练
6 . 已知抛物线经过点.设为原点,过抛物线的焦点作斜率不为的直线交抛物线于两点且直线分别交直线于点和点.求证:以为直径的圆经过轴上的两个定点.
2023-10-31更新 | 338次组卷 | 1卷引用:重难专攻(十)圆锥曲线中的定点问题 讲
7 . 在平面直角坐标系中,已知是函数的图像上的动点,以为圆心的圆与轴交于两点,与轴交于两点.
(1)求证:的面积为定值;
(2)设直线与圆交于两点。若,求圆的方程.
2023-12-26更新 | 323次组卷 | 5卷引用:专题5.6 期末考前必做30题(解答题提升版)-2020-2021学年高二数学下学期期末专项复习(沪教版)
8 . 已知在平面直角坐标系xOy中,圆C的圆心在直线l上,圆D与直线l相切,,且线段OE为圆C与圆D的公共弦.
(1)分别求圆C与圆D的标准方程;
(2)若直线m与圆C、圆D分别交于异于原点的两点QP,求证:以线段PQ为直径的圆M恒过定点E
2023-10-25更新 | 367次组卷 | 3卷引用:模块二 专题2 解析几何中定值、定点、定直线问题【讲】(高二期中压轴专项)
9 . 如图,在平面直角坐标系中,设点是椭圆C上一点,从原点O向圆作两条切线,分别与椭圆C交于点,直线的斜率分别记为.
   
(1)若圆Mx轴相切于椭圆C的右焦点,求圆M的方程;
(2)若,求证:
(3)在(2)的情况下,求的最大值.
2023-09-12更新 | 1181次组卷 | 6卷引用:专题9.8 直线与圆锥曲线位置关系(练)-江苏版《2020年高考一轮复习讲练测》
10 . 在平面直角坐标系中,已知圆心在轴上的圆经过点,且被轴截得的弦长为.经过坐标原点的直线与圆交于两点.
(1)求圆的方程;
(2)若点,直线与圆的另一个交点为,直线与圆的另一个交点为,分别记直线、直线的斜率为,求证:为定值.
2023-09-14更新 | 1124次组卷 | 5卷引用:专题16 直线与圆的位置关系8种常见考法归类(3)
共计 平均难度:一般