组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 17 道试题

1 .

已知点A(2,0),B(2,0),动点M(x,y)满足直线AMBM的斜率之积为.记M的轨迹为曲线C.

(1)求C的方程,并说明C是什么曲线;

(2)过坐标原点的直线交CPQ两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.

(i)证明:是直角三角形;

(ii)求面积的最大值.

2019-06-09更新 | 36662次组卷 | 63卷引用:山西省晋城市高平一中、阳城一中、高平实验中学2020-2021学年高二上学期期末联考数学(理)试题
9-10高一下·黑龙江哈尔滨·期末
2 . 设椭圆过点两点,O为坐标原点.
(1)求椭圆E的标准方程;
(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且?若存在,写出该圆的方程,并求的取值范围,若不存在,请说明理由.
2022-02-28更新 | 1829次组卷 | 16卷引用:2010年哈尔滨市第六中学高一下学期期末考试数学卷
3 . 设椭圆的左右焦点分别是双曲线的左右顶点,且椭圆的右顶点到双曲线的渐近线的距离为.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,写出该圆的方程,并求的取值范围,若不存在,说明理由.
2022-12-07更新 | 1764次组卷 | 9卷引用:湖北省武汉市江岸区2022-2023学年高二上学期期末数学试题
4 . 已知椭圆的离心率为C上的点到其焦点的最大距离为
(1)求C的方程;
(2)若圆的切线lC交于点AB,求的最大值.
2023-03-11更新 | 728次组卷 | 4卷引用:辽宁省农村重点高中协作体2022-2023学年高二上学期期末考试数学试题
智能选题,一键自动生成优质试卷~
6 . 已知椭圆)的离心率为,其上焦点与抛物线的焦点重合.
   
(1)求椭圆的方程;
(2)若过点的直线交椭圆于点,同时交抛物线于点(如图1所示,点在椭圆与抛物线第一象限交点上方),试比较线段长度的大小,并说明理由;
(3)若过点的直线交椭圆于点,过点与直线垂直的直线交抛物线于点(如图2所示),试求四边形面积的最小值.
2023-12-06更新 | 545次组卷 | 2卷引用:上海市松江区2024届高三上学期期末质量监控数学试题
7 . 1.在平面直角坐标系中,椭圆的离心率为,焦距为2.

(1)求椭圆的方程;
(2)如图,动直线交椭圆A两点,是椭圆上一点,直线的斜率为,且是线段延长线上一点,且的半径为的两条切线,切点分别为S.求的最小值及的最大值.
8 . 已知椭圆)的离心率为,其上焦点与抛物线的焦点重合.若过点的直线交椭圆于点,过点与直线垂直的直线交抛物线于点(如图所示),则四边形面积的最小值为_________

2024-01-12更新 | 546次组卷 | 4卷引用:上海市青浦区朱家角中学2023-2024学年高二上学期期末考试数学试题
9 . 已知椭圆的左、右焦点分别为,上顶点为到直线的距离为,且.
(1)求椭圆的标准方程;
(2)过的直线m与椭圆交于两点,过且与m垂直的直线n与圆O交于CD两点,求的取值范围.
2024-02-15更新 | 494次组卷 | 1卷引用:四川省成都市树德中学2024届高三上学期期末数学(理)试题
10 . 已知点是圆的动点,过轴,为垂足,且,记动点的轨迹分别为
(1)证明:有相同的离心率;
(2)若直线与曲线交于,与曲线交于,与圆交于,当时,试比较的大小.
共计 平均难度:一般