组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 28 道试题
1 . 某单位有10000名职工,想通过验血的方法筛查出某种细菌感染性疾病.抽样化验显示,当前携带该细菌的人约占0.9%,若逐个化验需化验10000次.统计专家提出了一种化验方法:随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,则说明其中至少有一人的血样呈阳性,就需对每个人再分别化验一次.
(1)若每人单独化验一次花费10元,n个人混合化验一次花费元.问n为何值时,化验费用的数学期望最小?(注:当时,
(2)该疾病主要是通过人与人之间进行传播,感染人群年龄大多数是40岁以上.细菌进入人体后有潜伏期.潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染给他人的可能性越高.现对已发现的90个病例的潜伏期(单位:天)进行调查,统计发现潜伏期的平均数为7.2,方差为.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:
年龄/人数长期潜伏非长期潜伏
40岁以上1550
40岁及40岁以下1015
①是否有95%的把握认为“长期潜伏”与年龄有关?
②假设潜伏期X服从正态分布,其中近似为样本平均数近似为样本方差.为防止该疾病的传播,现要求感染者的密接者居家观察14天,请用概率的知识解释其合理性.
附:
0.10.050.010
2.7063.8416.635
,则
2024-05-05更新 | 554次组卷 | 3卷引用:2024年新高考Ⅰ卷浙大优学靶向精准模拟数学试题(一)
2 . 电信诈骗是指通过电话、网络和短信方式,编造虚假信息,设置骗局,对受害人实施远程诈骗的犯罪行为.随着时代的全面来临,借助手机、网银等实施的非接触式电信诈骗迅速发展蔓延,不法分子甚至将“魔爪”伸向了学生.为了调查同学们对“反诈”知识的了解情况,某校进行了一次抽样调查.若被调查的男女生人数均为,统计得到以下列联表.经过计算,依据小概率值的独立性检验,认为该校学生对“反诈”知识的了解与性别有关,但依据小概率值的独立性检验,认为该校学生对“反诈”知识的了解与性别无关.

性别

不了解

了解

合计

女生

男生

合计

(1)求n的值;
(2)将频率视为概率,用样本估计总体,从全校男生中随机抽取5人,记其中对“反诈”知识了解的人数为X,求X的分布列及数学期望.
(3)为了增强同学们的防范意识,该校举办了主题为“防电信诈骗,做反诈达人”的知识竞赛.已知全校参加本次竞赛的学生分数近似服从正态分布,若某同学成绩满足,则该同学被评为“反诈标兵”;若,则该同学被评为“反诈达人”.
(i)试判断分数为88分的同学能否被评为“反诈标兵”;
(ii)若全校共有50名同学被评为“反诈达人”,试估计参与本次知识竞赛的学生人数.(四舍五入后取整)
附:,其中

0.10

0.05

0.025

0.01

0.001

2.706

3.841

5.024

6.635

10.828

,则
2024-05-05更新 | 1799次组卷 | 5卷引用:2024年新高考Ⅰ卷浙大优学靶向精准模拟数学试题(七)
3 . 下列结论中正确的有(       
A.若随机变量满足,则
B.若随机变量,且,则
C.若线性相关系数越接近1,则两个变量的线性相关性越强
D.数据40,27,32,30,38,54,31,50的第50百分位数为32
2024-05-05更新 | 1885次组卷 | 4卷引用:2024年新高考Ⅰ卷浙大优学靶向精准模拟数学试题(六)
2024·全国·模拟预测
4 . 设随机变量,则(       
A.正态曲线关于对称
B.正态曲线随着的变化而上下波动
C.设随机变量,则
D.正态曲线与轴之间的面积为1
2024-04-28更新 | 304次组卷 | 2卷引用:2024届新高考数学原创卷3
智能选题,一键自动生成优质试卷~
5 . 下列说法正确的是(       
A.小明统计了近5次的数学考试成绩,分别是90,120,108,123,116,则这组数据的第60百分位数是116
B.一组数据的经验回归方程为,则当时,残差为
C.一组数据的均值为,标准差为s,则数据,…,的均值为
D.设随机变量,且,则
2024-04-28更新 | 557次组卷 | 2卷引用:高考2024年普通高等学校招生全国统一考试·预测卷数学(五)
6 . 亚运聚欢潮,璀璨共此时,2023年9月第19届亚洲运动会在杭州举办,来自亚洲45个国家和地区的1万多名运动员在这里团结交流、收获友谊,奋勇拼搏、超越自我,共同创造了亚洲体育新的辉煌和荣光,赢得了亚奥理事会大家庭和国际社会的广泛好评.亚运会圆满结束后,杭州某学校组织学生参加与本届亚运会有关的知识竞赛,为了解该校学生对本届亚运会有关赛事知识的掌握情况,采用随机抽样的方法抽取了600名学生进行调查,成绩全部分布在分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.

(1)求频率分布直方图中的值.
(2)估计这600名学生成绩的中位数.
(3)由频率分布直方图可以认为,这次竞赛成绩近似服从正态分布,其中为样本平均数(同一组数据用该组数据的区间中点值作代表),,试用正态分布知识解决下列问题:
①若这次竞赛共有2.8万名学生参加,试估计竞赛成绩超过86.8分的人数(结果精确到个位);②现从所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过77.8分的人数为,求随机变量的期望.
附:若随机变量服从正态分布,则
2024-04-08更新 | 1104次组卷 | 5卷引用:2024年全国高考名校名师联席命制数学押题卷(六)
7 . 下列说法正确的是(       
A.若随机变量,则
B.若经验回归方程中的,则变量正相关
C.若随机变量,且,则
D.若事件为互斥事件,则的对立事件与的对立事件一定互斥
8 . 正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量,定义其累积分布函数为.已知某系统由一个电源和并联的三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.
(1)已知电源电压(单位:)服从正态分布,且的累积分布函数为,求
(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量(单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为.
(ⅰ)设,证明:
(ⅱ)若第天元件发生故障,求第天系统正常运行的概率.
附:若随机变量服从正态分布,则
2024-02-20更新 | 1378次组卷 | 5卷引用:2024届高三星云二月线上调研考试数学试题
9 . 某市为提升中学生的环境保护意识,举办了一次“环境保护知识竞赛”,分预赛和复赛两个环节,预赛成绩排名前三百名的学生参加复赛.已知共有12000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到频率分布直方图如图:

   

(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求至少有1人预赛成绩优良的概率,并求预赛成绩优良的人数X的分布列及数学期望;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布,其中可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且,已知小明的预赛成绩为91分,利用该正态分布,估计小明是否有资格参加复赛?
附:若,则
2024-02-17更新 | 2425次组卷 | 10卷引用:陕西省西安市2024年高三第一次质量检测理科数学试题
10 . 面试是求职者进入职场的一个重要关口,也是机构招聘员工的重要环节.某科技企业招聘员工,首先要进行笔试,笔试达标者进入面试,面试环节要求应聘者回答3个问题,第一题考查对公司的了解,答对得2分,答错不得分,第二题和第三题均考查专业知识,每道题答对得4分,答错不得分.
(1)若一共有100人应聘,他们的笔试得分X服从正态分布,规定为达标,求进入面试环节的人数大约为多少(结果四舍五入保留整数);
(2)某进入面试的应聘者第一题答对的概率为,后两题答对的概率均为,每道题是否答对互不影响,求该应聘者的面试成绩Y的数学期望.
附:若),则.
共计 平均难度:一般