组卷网 > 知识点选题 > 类比推理
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 14 道试题
1 . (1)证明:函数为奇函数的充要条件是
(2)我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.
①求函数的图象的对称中心.
②类比上述推论,写出“函数的图象关于y轴成轴对称图形的充要条件是函数为偶函数”的一个推广的结论.
2023-11-05更新 | 146次组卷 | 3卷引用:四川省雅安市天立学校腾飞高中2023-2024学年高一上学期11月月考数学试题
2 . 椭圆:=1()的中心在坐标原点,为左焦点,为右顶点,为短轴的端点,当时,椭圆的离心率为,我们称此类椭圆为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(       
A.B.
C.D.
2022-05-30更新 | 266次组卷 | 2卷引用:第14讲 双曲线(2)
3 . 观察下面的解答过程:已知正实数ab满足 ,求的最小值.
解:∵

当且仅当,结合时等号成立,
的最小值为
请类比以上方法,解决下面问题:
(1)已知正实数xy满足,求 的最小值;
(2)已知正实数xy满足 ,求的最小值.
2022-05-04更新 | 311次组卷 | 2卷引用:专题2.4 基本不等式-重难点题型检测-2022-2023学年高一数学举一反三系列(人教A版2019必修第一册)
4 . 赵爽弦图(如图1)中的大正方形是由4个全等的直角三角形和中间的小正方形拼接而成的,若直角三角形的两条直角边长为ab,斜边长为c,由大正方形面积等于4个直角三角形的面积与中间小正方形的面积之和可得勾股定理.仿照赵爽弦图构造如图2所示的菱形,它是由两对全等的直角三角形和中间的矩形拼接而成的,设直角三角形的斜边都为1,其中一对直角三角形含有锐角,另一对直角三角形含有锐角(位置如图2所示).借鉴勾股定理的推导思路可以得到结论(       
A.B.
C.D.
2022-05-01更新 | 1910次组卷 | 6卷引用:5.5三角恒等变换
智能选题,一键自动生成优质试卷~
5 . 我们知道,函数的图像关于坐标原点成中心对称的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图像关于点成中心对称的充要条件是函数为奇函数.
(1)求函数图像的对称中心;
(2)请利用函数的对称性求的值.
(3)类比上述推广结论,写出“函数的图像关于轴成轴对称的充要条件是函数为偶函数”的一个推广结论.
2020-11-15更新 | 863次组卷 | 2卷引用:湖南省长沙市长郡中学2020-2021学年高一上学期期中数学试题
6 . 在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值,这可以通过方程确定出来,类比上述结论可得的正值为(       
A.1B.C.2D.4
2020-10-23更新 | 509次组卷 | 7卷引用:2023版 北师大版(2019) 必修第一册 突围者 第四章 第一节 对数的概念
7 . 现新定义两个复数)和)之间的一个新运算,其运算法则为:.
(1)请证明新运算对于复数的加法满足分配律,即求证:
(2)设运算为运算的逆运算,请推导运算的运算法则.
2020-07-16更新 | 322次组卷 | 6卷引用:沪教版(2020) 必修第二册 同步跟踪练习 第9章 复数 9.1~9.2 阶段综合训练
8 . 给出下面类比推理:
①“若,则”类比推出“若,则”;
②“”类比推出“”;
③“,若,则”类比推出“,若,则”;
④“,若,则”类比推出“,若,则为复数集)”.
其中结论正确序号的是_______.
2020-06-19更新 | 118次组卷 | 2卷引用:第01讲 复数的概念-【帮课堂】2021-2022学年高一数学同步精品讲义(苏教版2019必修第二册)
2018高三下·全国·专题练习
填空题-单空题 | 适中(0.65) |
名校
9 . 关于圆周率,祖冲之的贡献有二:①;②用作为约率,作为密率,其中约率与密率提出了用有理数最佳逼近实数的问题.约率可通过用连分数近似表示的方法得到,如:,舍去0.0625135,得到逼近的一个有理数为,类似地,把化为连分数形式:mnk为正整数,r为0到1之间的无理数),舍去r得到逼近的一个有理数为__________.
2020-02-10更新 | 533次组卷 | 5卷引用:4.1+指数-2020-2021学年新教材导学导练高中数学必修第一册(人教A版)
13-14高二·全国·课后作业
解答题-证明题 | 适中(0.65) |
名校
10 . 先阅读下列题目的证法,再解决后面的问题.
已知,且,求证:.
证明:构造函数
,
因为对一切,恒有,
所以,
从而得.
(1)若,请由上述结论写出关于的推广式;
(2)参考上述证法,请对你推广的结论加以证明.
共计 平均难度:一般