组卷网 > 知识点选题 > 运算法则的类比
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 183 道试题
填空题-单空题 | 较易(0.85) |
名校
1 . 中国古代数学家刘徽在割圆术中提出的“割之弥细所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,体现了无限与有限之间转化的思想方法,如数式是一个确定值(数式中的省略号表示按此规律无限重复),该数式的值可以用如下方法求得:令原式,则,即,解得,取正数得.用类似的方法可得___________.
2 . 已知函数有两个零点,则可设,由,所以,这就是一元二次方程根与系数的关系,也称韦达定理,设多项式函数,根据代数基本定理可知方程个根,则       
A.B.C.D.
2022-06-30更新 | 334次组卷 | 2卷引用:江苏省盐城市2021-2022学年高一下学期期末数学试题
3 . 下面给出的类比推理中,结论正确的是(       
A.由“”类比推出“
B.由“”类比推出“
C.同一平面内,直线,若,则.类比推出:空间中,直线,若,则.
D.由“若三角形的周长为,面积为,则其内切圆的半径”类比推出“若三棱锥的表面积为,体积为,则内切球的半径
4 . 下面给出了关于复数的四种类比推理:
①由多项式的加减法运算,可以类比得到复数的加减法运算;
②由向量的性质:,可以类比得到复数的性质:
③方程,且)有两个不等实根的条件是,类比可得方程,且)有两个不等虚根的条件是
④由向量加法的几何意义,可以类比得到复数加法的几何意义.
其中类比得到的结论正确的是(       
A.①③B.②④C.②③D.①④
2022-05-12更新 | 82次组卷 | 1卷引用:陕西省宝鸡市金台区2021-2022学年高二下学期期中文科数学试题
填空题-单空题 | 容易(0.94) |
名校
5 . 张同学说:因为“,则”,所以“,则”.该同学在该推理过程中采用的是______推理方法.
2022-05-09更新 | 106次组卷 | 1卷引用:四川省成都市蓉城高中教育联盟2021-2022学年高二下学期期中考试文科数学试题
填空题-单空题 | 较易(0.85) |
6 . 像等这样分子为1的分数在算术上称为“单位分数”,数学史上常称为“埃及分数”.1202年意大利数学家斐波那契在他的著作《算盘术》中提到,任何真分数均可表示为有限个埃及分数之和,如.该结论直到1880年才被英国数学家薛尔维斯特严格证明,实际上,任何真分数分总可表示成①,这里,即不超过的最大整数,反复利用①式即可将化为若干个“埃及分数”之和.请利用上面的方法将表示成3个互不相等的“埃及分数”之和,则__________
2022-05-08更新 | 174次组卷 | 1卷引用:安徽省淮南市2022届高三下学期二模文科数学试题
7 . 我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式中“…”既代表无限次重复,但原式却又是个定值,它可以通过方程解得,类比上述方法,则       
A.B.C.D.
2022-05-05更新 | 1331次组卷 | 3卷引用:四川省内江市2022届高三第三次模拟考试数学(文)试题
8 . 下列类比推理中,得到的结论正确的是(       
A.把类比,则有
B.向量的数量积运算与实数的运算性质类比,则有
C.把类比,则有
D.把长方体与长方形类比,则有长方体的对角线平方等于长宽高的平方和
2022-05-04更新 | 177次组卷 | 1卷引用:广西玉林市市直六所普通高中2021-2022学年高二下学期期中联合质量评价检测数学(文)试题
填空题-单空题 | 适中(0.65) |
名校
10 . 已知225的所有正约数之和可按如下方法得到:因为,所以225的所有正约数之和为,参照上述方法,可求得108的所有正约数之和为__________
共计 平均难度:一般