解题方法
1 . 2021年3月,教育部办公厅发布《关于进一步加强中小学生睡眠管理工作的通知》,明确学生睡眠时间要求,高中生每天睡眠时间应达到8小时.若高一学生小明每天的睡眠时间在7小时至10小时之间随机分布,则他连续两天平均睡眠时间不少于8小时的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
您最近半年使用:0次
解题方法
您最近半年使用:0次
更新:2022/03/15组卷:134引用[2]
解题方法
3 . 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.某同学根据蒙特·卡罗方法设计了以下实验来估计圆周率
的值,每次用计算机随机在区间
内取两个数,共进行了2000次实验,统计发现这两个数与3能构成钝角三角形的情况有565种,则由此估计
的近似值为( )



A.3.12 | B.3.13 | C.3.14 | D.3.15 |
您最近半年使用:0次
解题方法
您最近半年使用:0次
更新:2022/03/04组卷:192引用[2]
压轴
5 . 2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图.

(1)根据频率分布直方图估计小区平均每户居民的平均损失;
(2)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有
以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(3)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
参考公式:
,
.

(1)根据频率分布直方图估计小区平均每户居民的平均损失;
(2)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有

经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(3)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
参考公式:


您最近半年使用:0次
解题方法
6 . 某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;
(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;
(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.
您最近半年使用:0次
解题方法
您最近半年使用:0次
解题方法
8 . 设
为不等式组
所表示的平面区域,
为不等式组
所表示的平面区域,其中
,在
内随机取一点
,记点
在
内的概率为
.
(1)若
,求
;
(2)求
的最大值.










(1)若


(2)求

您最近半年使用:0次
解题方法
您最近半年使用:0次
解题方法
您最近半年使用:0次