组卷网 > 知识点选题 > 集合新定义
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 61 道试题
1 . 对任意正整数n,记集合,若对任意都有,则记
(1)写出集合
(2)证明:对任意,存在,使得
(3)设集合.求证:中的元素个数是完全平方数.
2 . 设A为非空集合,令,则的任意子集R都叫做从AA的一个关系(Relation),简称A上的关系.例如时,{0,2},{(0,0),(2,1)}等都是A上的关系.设R为非空集合A上的关系.给出如下定义:
①(自反性)若,有,则称RA上是自反的;
②(对称性)若,有,则称RA上是对称的;
③(传递性)若,有,则称RA上是传递的;
如果R同时满足这3条性质,则称RA上的等价关系.
(1)已知,按要求填空:
①用列举法写出______________________;
A上的关系有____________个(用数值做答);
③用列举法写出A上的所有等价关系:{(0,0),(1,1),(2,2)},{(0,0),(1,1),(2,2),(0,1),(1,0)},{(0,0),(1,1),(2,2),(0,2),(2,0)},_______________,_______________,共5个.
(2)设是某个非空集合A上的关系,证明:
①若是自反的和对称的,则也是自反的和对称的;
②若是传递的,则也是传递的.
(3)若给定的集合An个元素(),,...,A的非空子集,满足且两两交集为空集.求证:A上的等价关系.
2022-07-09更新 | 490次组卷 | 1卷引用:北京市第八中学2021-2022学年高二下学期期末练习数学试题
解答题-证明题 | 较难(0.4) |
名校
3 . 对于正整数集合,如果任意去掉其中一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“可分集合”.
(1)判断集合是否是“可分集合”(不必写过程);
(2)求证:五个元素的集合一定不是“可分集合”;
(3)若集合是“可分集合”.
①证明:为奇数;
②求集合中元素个数的最小值.
2019-12-27更新 | 574次组卷 | 4卷引用:北京市密云区2019-2020学年高一上学期期末数学试题
解答题-证明题 | 较难(0.4) |
4 . 已知集合A为非空数集.定义:
(1)若集合,直接写出集合ST
(2)若集合.求证:
(3)若集合为集合A中元素的个数,求的最大值.
2024-03-25更新 | 257次组卷 | 1卷引用:北京市延庆区2023-2024学年高一上学期期末考试数学试卷
智能选题,一键自动生成优质试卷~
解答题-问答题 | 较难(0.4) |
名校
5 . 设正整数,若由实数组成的集合满足如下性质,则称集合:对中任意四个不同的元素,均有.
(1)判断集合是否为集合,说明理由;
(2)若集合集合,求中大于1的元素的可能个数;
(3)若集合集合,求证:中元素不能全为正实数.
6 . 已知是各项均为正整数的无穷递增数列,对于,定义集合,设为集合中的元素个数,若时,规定.
(1)若,写出的值;
(2)若数列是等差数列,求数列的通项公式;
(3)设集合,求证:.
2024-01-21更新 | 1345次组卷 | 7卷引用:北京市朝阳区2024届高三上学期期末数学试题
7 . 已知数列Aa1a2,…,aN的各项均为正整数,设集合,记T的元素个数为
(1)①若数列A:1,2,4,5,求集合T,并写出的值;
②若数列A:1,3,xy,且,求数列A和集合T
(2)若A是递增数列,求证:“”的充要条件是“A为等差数列”;
(3)请你判断是否存在最大值,并说明理由.
2023-12-30更新 | 715次组卷 | 7卷引用:北京市第二十四中学2023-2024学年高二上学期期末数学模拟试卷
解答题-证明题 | 较难(0.4) |
8 . 对于正整数集合)如果去掉其中任意一个元素.之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“和谐集”.
(1)判断集合是否是“和谐集”,并说明理由;
(2)求证:若集合是“和谐集”.则集合中元素个数为奇数;
(3)若集合是“和谐集”,求集合中元素个数的最小值.
2024-01-24更新 | 245次组卷 | 1卷引用:北京市密云区2023-2024学年高一上学期期末考试数学试卷
9 . 设,若非空集合同时满足以下4个条件,则称是“无和划分”:


,且中的最小元素大于中的最小元素;
,必有.
(1)若,判断是否是“无和划分”,并说明理由.
(2)已知是“无和划分”().
①证明:对于任意,都有
②若存在,使得,记,证明:中的所有奇数都属于.
10 . 给定正整数,设集合.对于集合中的任意元素,记.设,且集合,对于中任意元素,若则称具有性质
(1)判断集合是否具有性质?说明理由;
(2)判断是否存在具有性质的集合,并加以证明.
2024-01-25更新 | 305次组卷 | 4卷引用:北京市延庆区2023-2024学年高二上学期期末考试数学试卷
共计 平均难度:一般