组卷网 > 知识点选题 > 集合新定义
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1893 道试题
解答题-证明题 | 较难(0.4) |
1 . 已知集合A为非空数集.定义:
(1)若集合,直接写出集合ST
(2)若集合.求证:
(3)若集合为集合A中元素的个数,求的最大值.
2024-03-25更新 | 141次组卷 | 1卷引用:北京市延庆区2023-2024学年高一上学期期末考试数学试卷
2 . 已知集合,其中都是的子集且互不相同,记的元素个数,的元素个数.
(1)若,直接写出所有满足条件的集合
(2)若,且对任意,都有,求的最大值;
(3)若且对任意,都有,求的最大值.
3 . 群的概念由法国天才数学家伽罗瓦(1811-1832)在19世纪30年代开创,群论虽起源于对代数多项式方程的研究,但在量子力学晶体结构学等其他学科中也有十分广泛的应用.设是一个非空集合,“”是一个适用于中元素的运算,若同时满足以下四个条件,则称对“”构成一个群:(1)封闭性,即若,则存在唯一确定的,使得;(2)结合律成立,即对中任意元素都有;(3)单位元存在,即存在,对任意,满足,则称为单位元;(4)逆元存在,即任意,存在,使得,则称互为逆元,记作.一般地,可简记作可简记作可简记作,以此类推.正八边形的中心为.以表示恒等变换,即不对正八边形作任何变换;以表示以点为中心,将正八边形逆时针旋转的旋转变换;以表示以所在直线为轴,将正八边形进行轴对称变换.定义运算“”表示复合变换,即表示将正八边形先进行变换再进行变换的变换.以形如,并规定的变换为元素,可组成集合,则对运算“”可构成群,称之为“正八边形的对称变换群”,记作.则以下关于及其元素的说法中,正确的有(       
A.,且
B.互为逆元
C.中有无穷多个元素
D.中至少存在三个不同的元素,它们的逆元都是其本身
2024-03-21更新 | 556次组卷 | 1卷引用:2024届山西省高考一模数学试题
4 . 设集合,其中.若对任意的向量,存在向量,使得,则称A是“T集”.
(1)设,判断MN是否为“T集”.若不是,请说明理由;
(2)已知A是“T集”.
(i)若A中的元素由小到大排列成等差数列,求A
(ii)若c为常数),求有穷数列的通项公式.
5 . 将2024表示成5个正整数之和,得到方程①,称五元有序数组为方程①的解,对于上述的五元有序数组,当时,若,则称密集的一组解.
(1)方程①是否存在一组解,使得等于同一常数?若存在,请求出该常数;若不存在,请说明理由;
(2)方程①的解中共有多少组是密集的?
(3)记,问是否存在最小值?若存在,请求出的最小值;若不存在,请说明理由.
2024高三·江苏·专题练习
填空题-单空题 | 容易(0.94) |
6 . 定义集合运算:,集合,则集合所有元素之和为______
2024-03-17更新 | 113次组卷 | 1卷引用:黄金卷03(2024新题型)
2024高三·全国·专题练习
多选题 | 较难(0.4) |
名校
解题方法
7 . 由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集MN,且满足M中的每一个元素小于中的每一个元素,则称为戴德金分割.试判断下列选项中,可能成立的是(     
A.是一个戴德金分割
B.M没有最大元素,N有一个最小元素
C.M有一个最大元素,N有一个最小元素
D.M没有最大元素,N也没有最小元素
2024-03-16更新 | 183次组卷 | 2卷引用:专题01 集合与常用逻辑用语-2
8 . 在正方形中,设D是正方形的内部的点构成的集合,,则集合表示的平面区域可能是(       
A.四边形区域B.五边形区域C.六边形区域D.八边形区域
2024-03-16更新 | 207次组卷 | 2卷引用:浙江省丽水市第二高级中学2023-2024学年高三下学期开学检测数学试卷
9 . 设A是正整数集的一个非空子集,如果对于任意,都有,则称A为自邻集.记集合的所有子集中的自邻集的个数为
(1)直接写出的所有自邻集;
(2)若n为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:
2024-03-15更新 | 268次组卷 | 1卷引用:北京市第八中学2023-2024学年高三下学期3月月考数学试题
10 . 拓扑学是一个研究图形(或集合)整体结构和性质的一门几何学,以抽象而严谨的语言将几何与集合联系起来,富有直观和逻辑.已知平面,定义对,其度量(距离)并称为一度量平面.设,称平面区域为以为心,为半径的球形邻域.
(1)试用集合语言描述两个球形邻域的交集;
(2)证明:中的任意两个球形邻域的交集是若干个球形邻域的并集;
(3)一个集合称作“开集”当且仅当其是一个无边界的点集.证明:的一个子集是开集当且仅当其可被表示为若干个球形邻域的并集.
2024-03-12更新 | 220次组卷 | 1卷引用:2024年九省联考数学模拟试卷
首页5 6 7 8 9 10 11 12 末页
跳转: 确定
共计 平均难度:一般